Performance score based multi-objective optimization for thermal design of partially filled high porosity metal foam pipes under forced convection

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Abstract

Optimization study in flow through metal foams for heat exchanging applications is very much essential as it involves variety of fluid flow and structural properties. Moreover, the identification of best combinations of structural parameters of metal foams for simultaneous improvement of heat transfer and pressure drop is a pressing situation. In this work, six different metal foam configurations are considered for the enhancement of heat transfer in a circular conduit. The foam is aluminum with PPI varying from 10 to 45 and almost the same porosity (0.90-0.95). The aluminum foams are chosen from the available literature and they are partially filled in the conduit to reduce the pressure drop. For a constant heat flux condition, the goal is to find out the efficient metal foam and configurations when air is considered as a working fluid. A special attention is paid to the preference between pressure drop and heat transfer enhancements. That is why TOPSIS optimization techniques with five different criteria (contains the combination of the weightage/priority of heat transfer and pressure drop) is used. Based on the numerical results of heat and fluid flow in conduit, it is found that when an equal importance is given to both heat transfer and friction effect, 30 PPI aluminum foam with 80% filling on the inner lateral of the pipe provides the best score as 0.8197. The best configuration and PPI for different preferences between friction and heat transfer enhancements is discussed in details. The Reynolds number varies from 4500 to 16500. © 2021 Elsevier Ltd

Description

Keywords

Air, Aluminum, Drops, Flow of fluids, Forced convection, Friction, Heat flux, Heat transfer coefficients, Metal foams, Multiobjective optimization, Porosity, Reynolds number, Aluminium foam, Heat transfer and pressure drop, Heat Transfer enhancement, Internal flows, LTNE, Multi-objectives optimization, Performance, Thermal designs, TOPSIS, Pressure drop

Citation

International Journal of Heat and Mass Transfer, 2022, 182, , pp. -

Collections

Endorsement

Review

Supplemented By

Referenced By