Magnetically induced codeposition of Ni-Cd alloy coatings for better corrosion protection
No Thumbnail Available
Date
2014
Authors
Rao, V.R.
Hegde, A.C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The effects of applied magnetic field, B (both parallel and perpendicular) during process of electrodeposition of Ni-Cd alloy coating on mild steel from a newly proposed electrolytic bath have been studied by using X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and scanning electron microscopy (SEM) analysis. Both parallel and perpendicular B reduced the corrosion rates (CRs); however, the effect is more pronounced in case of perpendicular B. Progressive decrease of CR with increase in the intensity of B showed that corrosion protection efficacy bears close relation with changed composition and crystallographic orientation of the coatings. Under optimal condition, Ni-Cd coating deposited at 0.8 T (perpendicular) was found to be 35 times less corrosive than the conventional Ni-Cd coating (B = 0 T) deposited from the same bath for same time. The effect of B on thickness, microhardness, surface morphology, composition, and crystallographic orientation, and hence, the corrosion resistance of the coatings were analyzed in the light of magnetohydrodynamic (MHD) effect. 2014 American Chemical Society.
Description
Keywords
Citation
Industrial and Engineering Chemistry Research, 2014, Vol.53, 13, pp.5490-5497