Ultralow thermal conductivity and thermally-deactivated electrical transport in a 1D silver array with alternating δ-bonds

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry

Abstract

We report the synthesis of a (TMA)AgBr<inf>2</inf> (TMA = tetramethylammonium) crystal, which comprises inorganic anionic chains of -(AgBr<inf>2</inf>)<inf>∝</inf>- stabilized by columnar stacks of organic TMA cations with a periodic arrangement of shorter and longer Ag(i)⋯Ag(i) bonds, even though all the Ag(i) ions are chemically equivalent. The presence of two chemically non-equivalent bridging Br ions is attributed to the primary cause of such an unusual arrangement, as clearly visualized in the charge density plot of (TMA)AgBr<inf>2</inf> extracted from the theoretical calculations based on density functional theory. Remarkably, we identified from the orbital-projected density of states the existence of alternate δ-like bonding involving d<inf>xy</inf> orbitals of 4d10 Ag(i), which was attributed to the cause for ultralow thermal conductivity and thermally-deactivated electrical transport in (TMA)AgBr<inf>2</inf>. Barring the energetics, our observations on the existence of a δ-bond will shed new light in understanding the nature of metal-metal chemical bonding and its unprecedented implications. © 2024 The Royal Society of Chemistry.

Description

Keywords

Silver halides, Spectroscopic analysis, Synthesis (chemical), Anionic chains, Columnar stacks, Density plots, Electrical transport, Inorganics, Orbitals, Organics, Silver arrays, Tetramethylammonium, Thermal, Bromine compounds

Citation

Chemical Science, 2024, 15, 38, pp. 15907-15912

Collections

Endorsement

Review

Supplemented By

Referenced By