Further results on Erd?s Faber Lov sz conjecture
No Thumbnail Available
Date
2019
Authors
Hegde, S.M.
Dara, S.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In 1972, Erd?s Faber Lov sz (EFL) conjectured that, if H is a linear hypergraph consisting of n edges of cardinality n, then it is possible to color the vertices with n colors so that no two vertices with the same color are in the same edge. In 1978, Deza, Erd s and Frankl had given an equivalent version of the same for graphs: Let G=? i=1 n A i denote a graph with n complete graphs A 1 ,A 2 , ,A n , each having exactly n vertices and have the property that every pair of complete graphs has at most one common vertex, then the chromatic number of G is n. The clique degree d K (v) of a vertex v in G is given by d K (v)=|{A i :v?V(A i ),1?i?n}|. In this paper we give a method for assigning colors to the graphs satisfying the hypothesis of the Erd?s Faber Lov sz conjecture and every A i (1?i?n) has atmost [Formula presented] vertices of clique degree greater than one using Symmetric latin Squares and clique degrees of the vertices of G. 2019 Kalasalingam University
Description
Keywords
Citation
AKCE International Journal of Graphs and Combinatorics, 2019, Vol., , pp.-