Local convergence for a fifth order Traub-Steffensen-Chebyshev-like composition free of derivatives in Banach space

Thumbnail Image

Date

2018

Authors

Argyros, I.K.
George, S.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We present the local convergence analysis of a fifth order Traub-Steffensen-Chebyshev-like composition for solving nonlinear equations in Banach spaces. In earlier studies, hypotheses on the Fr chet derivative up to the fifth order of the operator under consideration is used to prove the convergence order of the method although only divided differences of order one appear in the method. That restricts the applicability of the method. In this paper, we extended the applicability of the fifth order Traub-Steffensen-Chebyshev-like composition without using hypotheses on the derivatives of the operator involved. Our convergence conditions are weaker than the conditions used in earlier studies. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study. 2018 Global-Science Press.

Description

Keywords

Citation

Numerical Mathematics, 2018, Vol.11, 1, pp.160-168

Endorsement

Review

Supplemented By

Referenced By