Structural, vibrational and surface analysis of Fe3BO6 nanoplates synthesized by combustion method

No Thumbnail Available

Date

2018

Authors

Kumari, K.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In the present investigation, a simple synthesis method is explored involving a self-combustion of a solid precursor mixture of iron oxide (Fe2O3) and boric acid (H3BO3) using camphor (C10H16O) as fuel in microwave oven in order to form a single phase Fe3BO6 crystallites. An as-prepared ceramic powder in this way after combustion of a precursor, which contained a lot of residual carbon left after the combustion, was reheated at 400 C to burn it out as oxide in a reaction with air. This is a very simple and fast method to form a phase pure compound from usual metal salts with functional properties. The size and morphology of the Fe3BO6 crystallites has been characterized in terms of X-ray diffraction (XRD) pattern in correlation to the field emission scanning electron microscopy (FESEM) image. A single phase compound Fe3BO6 of an orthorhombic crystal structure with Pnma space group and average crystallites size D = 46 nm is analyzed from the XRD pattern. IR/Raman and X-ray photoelectron spectroscopy (XPS) spectra studied for the Fe3BO6 samples in this investigation elucidate how the density of states of the phonons and valence electrons confine in small crystallites. The XPS bands in Fe3+, B3+ and O2? species and IR/Raman bands in the oxygen polygons confer the results of forming Fe3BO6 with a bonded surface layer. 2018 Elsevier B.V.

Description

Keywords

Citation

Journal of Molecular Structure, 2018, Vol.1165, , pp.293-298

Endorsement

Review

Supplemented By

Referenced By