Effect of induced magnetic field on electrocrystallization of Zn-Ni alloy and their corrosion study

No Thumbnail Available

Date

2014

Authors

Rao, V.R.
Hegde, A.C.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Zn-Ni alloy coatings have been deposited galvanostatically on mild steel under the effect of induced magnetic field (B), using gelatin and glycerol as additives. The effect of field intensity (from 0.05 to 0.4 T) and direction (both parallel and perpendicular) on electrocrystallization process has been studied considering the magnetohydrodynamic effect. The corrosion behaviors of coatings, deposited under different conditions of B, were evaluated by electrochemical AC and DC methods. Under optimal condition of B (perpendicular), Zn-Ni coatings showed about 3 times less corrosion rate (CR) than the one developed under natural convection (B = 0 T), deposited from same bath for same duration. The significant decrease of CR was attributed to unique electrocrystallization process during deposition, favoring increased ?-Ni5Zn21 (321) and decreased ?-Ni 5Zn21 (330) phase. Progressive decrease of CR with increase of B showed that corrosion protection efficacy of the coatings bears close relation with their crystallographic orientations and surface topography, evidenced by XRD study and SEM analysis. The effect of B on thickness, microhardness, surface morphology, phase structure, and the corrosion resistance of coatings was analyzed and results were discussed. ASM International.

Description

Keywords

Citation

Journal of Materials Engineering and Performance, 2014, Vol.23, 6, pp.2067-2074

Endorsement

Review

Supplemented By

Referenced By