Baire functions and non-isolated non-monotone discontinuities

dc.contributor.authorVeerapazham, M.
dc.contributor.authorAntony, K.
dc.date.accessioned2026-02-04T12:25:04Z
dc.date.issued2024
dc.description.abstractWe show that a Baire function on a metric space can be described in terms of its restrictions on specific subsets. Furthermore, it is proved that for a real-valued function on a subset of R, among all points of discontinuity, the non-isolated non-monotone points are crucial to determining whether the function is a Baire function or not. © 2024 Elsevier B.V.
dc.identifier.citationTopology and its Applications, 2024, 345, , pp. -
dc.identifier.issn1668641
dc.identifier.urihttps://doi.org/10.1016/j.topol.2024.108842
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/21230
dc.publisherElsevier B.V.
dc.subjectBaire function
dc.subjectBorel of additive class k
dc.subjectDiscontinuity
dc.subjectNon-monotone point
dc.subjectPerfect kernel
dc.titleBaire functions and non-isolated non-monotone discontinuities

Files

Collections