Design of thermal energy storage system for solar cooker: a review
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
Solar cooking has been a research focus worldwide over the last few decades due to its numerous advantages, such as no running costs, non-polluting nature and ample availability. Solar cookers incorporate thermal energy storage (TES) units to enable cooking during off-sunshine hours. Within solar thermal applications, latent heat storage materials (LHSMs), particularly phase change materials (PCMs) are increasingly vital due to their superior energy storage density and isothermal working properties. The present review aims to provide a comprehensive overview of various TES unit designs integrated with cooking vessels for solar cookers. We discuss different types of solar cookers, various TES unit configurations, and the thermo-physical properties of heat storage materials. A key aspect of this work involves comparing the sizes of various TES units, derived from our previously developed computational scheme, with existing research. Prior studies often lacked specifics on the duration of off-sunshine cooking. However, determining the optimal PCM mass is crucial for designing efficient LHS units that maximize heat storage and release for sustained cooking. To address this gap, we employed a computational procedure to determine the duration for which various LHS units, integrated with box-type solar cookers, can maintain a constant cooking temperature. We also identified and compared the dimensions of containers needed to hold the optimum PCM mass. Our computational findings for the outer vessel diameter of LHS units align closely with previous studies. This computational approach offers a robust methodology for developing TES units that optimize PCM latent heat utilization, significantly enhancing solar cooker performance during sundown hours. Ultimately, we propose a pathway for improving future TES unit designs and present a strategy for marketing solar cookers. This review will be an invaluable resource for researchers, stimulating further advancements in solar cookers integrated with TES systems. © Indian Academy of Sciences 2025.
Description
Keywords
Food storage, Heat storage, Latent heat, Solar equipment, Solar heating, Thermal energy, Computational procedures, Energy storage unit, Latent heat storage, Phase Change, Sensible heat storages, Solar cookers, Solar cooking, Thermal energy storage, Thermal energy storage systems, Unit design, Phase change materials
Citation
Sadhana - Academy Proceedings in Engineering Sciences, 2025, 50, 4, pp. -
