NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at Sub-Cubic Millimeter Scale

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media Deutschland GmbH

Abstract

Segmenting 3D cell nuclei from microscopy image volumes is critical for biological and clinical analysis, enabling the study of cellular expression patterns and cell lineages. However, current datasets for neuronal nuclei usually contain volumes smaller than 10- 3 mm3 with fewer than 500 instances per volume, unable to reveal the complexity in large brain regions and restrict the investigation of neuronal structures. In this paper, we have pushed the task forward to the sub-cubic millimeter scale and curated the NucMM dataset with two fully annotated volumes: one 0.1 mm3 electron microscopy (EM) volume containing nearly the entire zebrafish brain with around 170,000 nuclei; and one 0.25 mm3 micro-CT (uCT) volume containing part of a mouse visual cortex with about 7,000 nuclei. With two imaging modalities and significantly increased volume size and instance numbers, we discover a great diversity of neuronal nuclei in appearance and density, introducing new challenges to the field. We also perform a statistical analysis to illustrate those challenges quantitatively. To tackle the challenges, we propose a novel hybrid-representation learning model that combines the merits of foreground mask, contour map, and signed distance transform to produce high-quality 3D masks. The benchmark comparisons on the NucMM dataset show that our proposed method significantly outperforms state-of-the-art nuclei segmentation approaches. Code and data are available at https://connectomics-bazaar.github.io/proj/nucMM/index.html. © 2021, Springer Nature Switzerland AG.

Description

Keywords

3D Instance Segmentation, Brain, Electron Microscopy (EM), Micro-CT (uCT), Mouse, Nucle, I Zebrafish

Citation

Lecture Notes in Computer Science, 2021, Vol.12901 LNCS, , p. 164-174

Endorsement

Review

Supplemented By

Referenced By