Expanding the applicability of Lavrentiev regularization methods for ill-posed problems

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this paper, we are concerned with the problem of approximating a solution of an ill-posed problem in a Hilbert space setting using the Lavrentiev regularization method and, in particular, expanding the applicability of this method by weakening the popular Lipschitz-type hypotheses considered in earlier studies such as (Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 26:35-48, 2005; Bakushinskii and Smirnova in Nonlinear Anal. 64:1255-1261, 2006; Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 28:13-25, 2007; Jin in Math. Comput. 69:1603-1623, 2000; Mahale and Nair in ANZIAM J. 51:191-217, 2009). Numerical examples are given to show that our convergence criteria are weaker and our error analysis tighter under less computational cost than the corresponding works given in (Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 26:35-48, 2005; Bakushinskii and Smirnova in Nonlinear Anal. 64:1255-1261, 2006; Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 28:13-25, 2007; Jin in Math. Comput. 69:1603-1623, 2000; Mahale and Nair in ANZIAM J. 51:191-217, 2009). © 2013 Argyros et al.; licensee Springer.

Description

Keywords

Boundary value problem, Fréchet-derivative, Hilbert space, Ill-posed problems, Lavrentiev regularization method, Source function, Stopping index

Citation

Boundary Value Problems, 2013, 2013, , pp. -

Collections

Endorsement

Review

Supplemented By

Referenced By