Improved local convergence for Euler Halley-like methods with a parameter
dc.contributor.author | Argyros, I.K. | |
dc.contributor.author | George, S. | |
dc.date.accessioned | 2020-03-31T08:35:19Z | |
dc.date.available | 2020-03-31T08:35:19Z | |
dc.date.issued | 2016 | |
dc.description.abstract | We present a local convergence analysis for Euler Halley-like methods with a parameter in order to approximate a locally unique solution of an equation in a Banach space setting. Using more flexible Lipschitz-type hypotheses than in earlier studies such as Huang and Ma (Numer Algorith 52:419 433, 2009), we obtain a larger radius of convergence as well as more precise error estimates on the distances involved. Numerical examples justify our theoretical results. 2015, Springer-Verlag Italia. | en_US |
dc.identifier.citation | Rendiconti del Circolo Matematico di Palermo, 2016, Vol.65, 1, pp.87-96 | en_US |
dc.identifier.uri | https://idr.nitk.ac.in/handle/123456789/11558 | |
dc.title | Improved local convergence for Euler Halley-like methods with a parameter | en_US |
dc.type | Article | en_US |