Improved local convergence for Euler Halley-like methods with a parameter

dc.contributor.authorArgyros, I.K.
dc.contributor.authorGeorge, S.
dc.date.accessioned2020-03-31T08:35:19Z
dc.date.available2020-03-31T08:35:19Z
dc.date.issued2016
dc.description.abstractWe present a local convergence analysis for Euler Halley-like methods with a parameter in order to approximate a locally unique solution of an equation in a Banach space setting. Using more flexible Lipschitz-type hypotheses than in earlier studies such as Huang and Ma (Numer Algorith 52:419 433, 2009), we obtain a larger radius of convergence as well as more precise error estimates on the distances involved. Numerical examples justify our theoretical results. 2015, Springer-Verlag Italia.en_US
dc.identifier.citationRendiconti del Circolo Matematico di Palermo, 2016, Vol.65, 1, pp.87-96en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/11558
dc.titleImproved local convergence for Euler Halley-like methods with a parameteren_US
dc.typeArticleen_US

Files