On clique convergence of graphs

dc.contributor.authorHegde, S.M.
dc.contributor.authorDara, S.
dc.date.accessioned2020-03-31T08:39:03Z
dc.date.available2020-03-31T08:39:03Z
dc.date.issued2016
dc.description.abstractLet G be a graph and KG be the set of all cliques of G, then the clique graph of G denoted by K(G) is the graph with vertex set KG and two elements Qi,Qj?KG form an edge if and only if Qi?Qj?0?. Iterated clique graphs are defined by K0(G)=G, and Kn(G)=K(Kn?1(G)) for n>0. In this paper we prove a necessary and sufficient condition for a clique graph K(G) to be complete when G=G1+G2, give a partial characterization for clique divergence of the join of graphs and prove that if G1, G2 are Clique-Helly graphs different from K1 and G=G1?G2, then K2(G)=G. 2016 Kalasalingam Universityen_US
dc.identifier.citationAKCE International Journal of Graphs and Combinatorics, 2016, Vol.13, 3, pp.261-266en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/12351
dc.titleOn clique convergence of graphsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
16 On clique convergence of graphs.pdf
Size:
198.65 KB
Format:
Adobe Portable Document Format