Deep learning architecture for big data analytics in detecting intrusions and malicious URL
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Institution of Engineering and Technology
Abstract
Security attacks are one of the major threats in today’s world. These attacks exploit the vulnerabilities in a system or online sites for financial gain. By doing so, there arises a huge loss in revenue and reputation for both government and private firms. These attacks are generally carried out through malware interception, intrusions, phishing uniform resource locator (URL). There are techniques like signature-based detection, anomaly detection, state full protocol to detect intrusions, blacklisting for detecting phishing URL. Even though these techniques claim to thwart cyberattacks, they often fail to detect new attacks or variants of existing attacks. The second reason why these techniques fail is the dynamic nature of attacks and lack of annotated data. In such a situation, we need to propose a system which can capture the changing trends of cyberattacks to some extent. For this, we used supervised and unsupervised learning techniques. The growing problem of intrusions and phishing URLs generates a need for a reliable architectural-based solution that can efficiently identify intrusions and phishing URLs. This chapter aims to provide a comprehensive survey of intrusion and phishing URL detection techniques and deep learning. It presents and evaluates a highly effective deep learning architecture to automat intrusion and phishing URL Detection. The proposed method is an artificial intelligence (AI)-based hybrid architecture for an organization which provides supervised and unsupervised-based solutions to tackle intrusions, and phishing URL detection. The prototype model uses various classical machine learning (ML) classifiers and deep learning architectures. The research specifically focuses on detecting and classifying intrusions and phishing URL detection. © The Institution of Engineering and Technology 2020.
Description
Keywords
Anomaly detection, Artificial intelligence-based hybrid architecture, Automat intrusion, Big data, Big data analytics, Computer crime, Data analysis, Data security, Detection techniques, Highly effective deep learning architecture, Information networks, Intrusion classification, Intrusion detection, Invasive software, Knowledge engineering techniques, Machine learning classifiers, Malicious URL detection, Pattern classification, Phishing uniform resource locator, Phishing URL detection, Phishing URL detection, Reliable architectural-based solution, Security attacks, Signature-based detection, Supervised learning techniques, Unsupervised learning, Unsupervised learning techniques, Web sites
Citation
Big Data Recommender Systems: Algorithms, Architectures, Big Data, Security and Trust, 2019, Vol., , p. 303-336
