Optimal backstepping sliding mode control for robot manipulator
No Thumbnail Available
Date
2015
Authors
Vijay, M.
Jena, D.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this paper a control strategy for robotic manipulator based on the coupling of the Backstepping sliding mode control (BSMC) and equivalent control approach has been presented. Initially, the Proportional Integral Derivative (PID) controller has developed for three different control strategies (IATE, ISE and ISTE) using GA. BSMC has developed for best optimal criterion by using GA. The main objectives of these controller are to provide stability, good disturbance rejection and small tracking error. The stability of the system is guaranteed by the checking of the Lyapunov stability theorem. Numerical simulations using the dynamic model of 2 DOF planner rigid robot manipulator with input torque disturbance shows the effectiveness in trajectory tracking problem and disturbance rejection. The simulation results of these controllers are compared with various torque disturbances in terms of path tracking and disturbance rejection. The proposed Backstepping SMC controller can achieve favourable tracking performance and it is robust with regard to disturbances in input torque and uncertainties in parameters. � 2015 IEEE.
Description
Keywords
Citation
2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, SPICES 2015, 2015, Vol., , pp.-