Interstitial Voids and Resultant Density of Liquid Water: A First-Principles Molecular Dynamics Study

dc.contributor.authorBiswas, S.
dc.contributor.authorChakraborty, D.
dc.contributor.authorMallik, B.S.
dc.date.accessioned2020-03-31T08:35:31Z
dc.date.available2020-03-31T08:35:31Z
dc.date.issued2018
dc.description.abstractMany anomalous properties of water can be explained on the basis of the coexistence of more than one density states: high-density water (HDW) and low-density water (LDW). We investigated these two phases of water molecules through first-principles molecular dynamics simulations using density functional theory (DFT) in conjunction with various van der Waals-corrected exchange and correlation functionals. Different density regions were found to exist due to the difference in short-range and long-range forces present in DFT potentials. These density regions were identified and analyzed on the basis of the distribution of molecules and voids present. We defined a local structure index to distinguish and find the probability of occurrence of these different states. HDW and LDW arise due to the presence of "interstitial water" molecules in between the first and second coordination shells. The population of interstitial water molecules is found to affect the overall dynamics of the system as they change the hydrogen bond pattern. 2018 American Chemical Society.en_US
dc.identifier.citationACS Omega, 2018, Vol.3, 2, pp.2010-2017en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/11741
dc.titleInterstitial Voids and Resultant Density of Liquid Water: A First-Principles Molecular Dynamics Studyen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
4 Interstitial Voids.pdf
Size:
7.01 MB
Format:
Adobe Portable Document Format