Electrodeposition of Sn-Ni alloy coatings and their characterization
No Thumbnail Available
Date
2015
Authors
Shetty, S.
Hegde, A.C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A new alkaline bath has been proposed for deposition of bright Sn-Ni alloy coatings on mild steel (MS). Depositions were carried out at different current densities (c.d.) and their corrosion behaviors were studied in 5% NaCl solution by electrochemical AC and DC methods. Sn-Ni coating, deposited at low c.d. i.e. at 1.0 A/dm2 was found to be the most corrosion resistant compared to those at other higher c.d., even up to 4.0 A/dm2. This least corrosion rate (CR) is attributed to high wt. % Sn in the deposit. Increase of CR at high c.d. range is due to decrease of wt. % Sn, explained by the observed anomalous type of codeposition, followed by the bath. Regardless of the deposition c.d., the bath developed bright coatings, inherent of Sn-Ni alloy. Experimental results are discussed taking in account of the phase structure, composition and surface morphology of the coatings, evidenced by X-ray diffraction (XRD), Energy Dispersive X-ray (EDX) and Scanning Electron Microscopy (SEM) analysis. � (2015) Trans Tech Publications, Switzerland.
Description
Keywords
Citation
Materials Science Forum, 2015, Vol.830-831, , pp.655-658