Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis
No Thumbnail Available
Date
2020
Authors
Nidhul K.
Kumar S.
Yadav A.K.
Anish S.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Computational fluid dynamics (CFD) and exergy analysis are conducted to investigate the impact of secondary flow produced by V-ribs on the overall performance of a triangular solar air heater (SAH) duct. For a fixed relative rib pitch (Rp = 10) and relative rib height (Rh = 0.05), the effect of rib inclination (α) is studied using CFD technique for varying Reynolds number (5000 ≤ Re ≤ 20000). Based on the CFD simulation results, empirical correlations capable of predicting Nu and f with an absolute variance of 8.7%, and 4.7%, respectively, are developed. Employing these correlations, exergetic performance analysis is carried out. Maximum effectiveness parameter (ε) of 2.01 is obtained for α = 45° at Re = 7500. The exergy analysis reveals that the entropy generated is lower for the ribbed triangular duct compared to the smooth duct with maximum enhancement in exergetic efficiency (ηex) as 23% for α = 45°. The study is extended for the rectangular duct to compare the performance with the ribbed triangular duct SAH (α = 45°). Results show that ribbed triangular duct SAH (α = 45°) is superior over various configurations of the ribbed rectangular duct SAH at higher mass flow rates. © 2020 Elsevier Ltd
Description
Keywords
Citation
Energy Vol. 200 , , p. -