Extended convergence of king-werner-like methods without derivatives

dc.contributor.authorArgyros, I.K.
dc.contributor.authorGeorge, S.
dc.date.accessioned2026-02-08T16:50:28Z
dc.date.issued2019
dc.description.abstractWe provide a semilocal as well as a local convergence analysis of some efficient King-Werner-likemethods of order 1+2 free of derivatives for Banach space valued operators. We use our new idea of the restricted convergence region to find a smaller subset than before containing the iterates. Consequently the resulting Lipschitz parameters are smaller than in earlier works. Hence, to a finer convergence analysis is obtained. The extensions involve no new constants, since the new ones specialize to the ones in previous works. Examples are used to test the convergence criteria. © 2020 by Nova Science Publishers, Inc. All rights reserved.
dc.identifier.citationUnderstanding Banach Spaces, 2019, Vol., , p. 125-135
dc.identifier.isbn9781536167450
dc.identifier.isbn9781536167467
dc.identifier.urihttps://doi.org/10.1007/s41060-024-00575-0
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/33839
dc.publisherNova Science Publishers, Inc.
dc.subjectBanach space
dc.subjectFréchet- derivative
dc.subjectKing’s method
dc.subjectSemilocal and local convergence analysis
dc.subjectWerner’s method
dc.titleExtended convergence of king-werner-like methods without derivatives

Files

Collections