Synthesis and characterization of zinc oxide incorporated iron borate glass-ceramic
No Thumbnail Available
Date
2019
Authors
Ramteke, R.
Kumari, K.
Bhattacharya, S.
Rahman, M.R.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Here, zinc oxide (ZnO) incorporated iron borate (Fe3BO6) glass-ceramics have been synthesized using the traditional melt-quenching technique, and the role of ZnO has been investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveals that the prepared samples have a single crystalline phase and crystalline nanostructures, respectively. The orthorhombic crystal structure has been retained without the formation of a new crystalline phase. The addition of ZnO is found to distort the Fe3BO6 lattice by substituting Zn2+ in the Fe3+ sites, with the formation of ZnO6 structural units as revealed by Fourier transform infrared spectroscopy (FTIR). FTIR and Raman spectroscopy conducted to study the structure of glass-ceramic, have also revealed the formation of other structural units like ZnO4, BO3, BO4, and FeO6 in the system. Surface analysis conducted by X-ray photoelectron spectroscopy (XPS) reveals that the addition of ZnO diminishes the formation of surface B2O3 layer which forms over the Fe3BO6 phase in the Fe3BO6 iron borate glass-ceramic system. ZnO addition has also shown a remarkable difference in the volume of the crystallization in the system, thereby paving the way for controlled crystallization in the iron borate glass-ceramic system. The controlled crystallization was achieved through additive content, retaining the iron borate (Fe3BO6) glass-ceramic system without the evolution of any secondary phases even with large additive concentrations up to 10 mol%. 2019 Elsevier B.V.
Description
Keywords
Citation
Journal of Alloys and Compounds, 2019, Vol.811, , pp.-