Extended convergence of gauss-newton s method and uniqueness of the solution

dc.contributor.authorArgyros, I.K.
dc.contributor.authorCho, Y.J.
dc.contributor.authorGeorge, S.
dc.date.accessioned2020-03-31T08:30:57Z
dc.date.available2020-03-31T08:30:57Z
dc.date.issued2018
dc.description.abstractThe aim of this paper is to extend the applicability of the Gauss-Newton s method for solving nonlinear least squares problems using our new idea of restricted convergence domains. The new technique uses tighter Lipschitz functions than in earlier papers leading to a tighter ball convergence analysis. 2018, SINUS Association. All rights reserved.en_US
dc.identifier.citationCarpathian Journal of Mathematics, 2018, Vol.34, 2, pp.135-142en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/11225
dc.titleExtended convergence of gauss-newton s method and uniqueness of the solutionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
11.Extended convergence.pdf
Size:
206.48 KB
Format:
Adobe Portable Document Format