Low-temperature sonochemical synthesis of high dielectric Lanthanum doped Cerium oxide nanopowder
No Thumbnail Available
Date
2018
Authors
Kishor, Kumar, M.J.
Kalathi, J.T.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Lanthanum (La) doped Cerium Oxide (CeO2) nanopowder was synthesized at a relatively lower temperature (70 C), without calcination in a simple, faster, and efficient way through sonochemical method. X-ray diffraction (XRD) results confirmed the formation of a cubic fluorite structure of nanocrystalline CeO2 and lattice deformation due to La-doping in CeO2. TEM analysis revealed that the size of La-doped CeO2 particles is in the range of 20?50 nm. In addition, selective area electron diffraction (SAED) and high-resolution TEM (HRTEM) analyses portrayed the nano-crystallinity, lattice fringe pattern, and d-spacing details of La-doped CeO2 powder. Lanthanum doping in CeO2 was further confirmed by a shift in Raman band towards the lower frequency (from 464 cm?1 to 457cm?1) along with peak intensity increase. Photoluminescence (PL) emission spectra showed that emission intensity of the La-doped CeO2 at 510 nm is increased due to oxygen vacancy mediated charge transfer. All these results confirm the successful doping of La in CeO2. The La-doped CeO2 powder possesses a high dielectric constant (?r) of 106 and a low dielectric loss (tan ?) of < 0.4 % at 1 kHz. The La-doped CeO2 finds potential applications on developing devices in the field of a thin film capacitor, transistors, and solid oxide fuel cells. 2018 Elsevier B.V.
Description
Keywords
Citation
Journal of Alloys and Compounds, 2018, Vol.748, , pp.348-354