Design of bypass rotary vane magneto rheological damper for prosthetic knee application

dc.contributor.authorTak R.S.S.
dc.contributor.authorKumar H.
dc.contributor.authorChandramohan S.
dc.contributor.authorSrinivasan S.
dc.date.accessioned2021-05-05T10:15:41Z
dc.date.available2021-05-05T10:15:41Z
dc.date.issued2019
dc.description.abstractIn this paper, a bypass rotary vane type magneto rheological (MR) damper suitable for prosthetic knee application is designed. The torque and angular velocity requirements of the normal human knee are used as design limits. In the proposed design, the rotary vane chamber and the MR valve are connected by hydraulic cables and ports and are designed separately. The rotary vane chamber is designed based on the cross-sectional size limits of the normal human knee, while the MR valve is designed with the objective of obtaining the maximum on-state damping torque, minimum weight, and minimum off-state torque. © copyright Environment and Climate Change Canada.en_US
dc.identifier.citationProceedings of 30th International Conference on Adaptive Structures and Technologies, ICAST 2019 , Vol. , , p. 105 - 106en_US
dc.identifier.urihttps://doi.org/
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/14717
dc.titleDesign of bypass rotary vane magneto rheological damper for prosthetic knee applicationen_US
dc.typeConference Paperen_US

Files