Expanding the applicability of Lavrentiev regularization methods for ill-posed problems
No Thumbnail Available
Date
2013
Authors
Argyros, I.K.
Cho, Y.J.
George, S.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this paper, we are concerned with the problem of approximating a solution of an ill-posed problem in a Hilbert space setting using the Lavrentiev regularization method and, in particular, expanding the applicability of this method by weakening the popular Lipschitz-type hypotheses considered in earlier studies such as (Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 26:35-48, 2005; Bakushinskii and Smirnova in Nonlinear Anal. 64:1255-1261, 2006; Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 28:13-25, 2007; Jin in Math. Comput. 69:1603-1623, 2000; Mahale and Nair in ANZIAM J. 51:191-217, 2009). Numerical examples are given to show that our convergence criteria are weaker and our error analysis tighter under less computational cost than the corresponding works given in (Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 26:35-48, 2005; Bakushinskii and Smirnova in Nonlinear Anal. 64:1255-1261, 2006; Bakushinskii and Smirnova in Numer. Funct. Anal. Optim. 28:13-25, 2007; Jin in Math. Comput. 69:1603-1623, 2000; Mahale and Nair in ANZIAM J. 51:191-217, 2009). 2013 Argyros et al.; licensee Springer.
Description
Keywords
Citation
Boundary Value Problems, 2013, Vol.2013, , pp.-