Conjugate heat transfer study comprising the effect of thermal conductivity and irreversibility in a pipe filled with metallic foams
No Thumbnail Available
Date
2020
Authors
Jadhav P.H.
Nagarajan G.
Perumal D.A.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A parametric study is proposed in this paper to examine heat dissipation rate and entropy generation of a forced convection in a horizontal pipe which is filled with high porous metallic foams. The study quantifies the effect of thermal conductivity and pore density on entropy generation when the pipe is fully filled with copper, aluminium and nickel metallic foams of 0.6 m length in the fluid flow direction. To predict fluid flow and heat transfer features through these metallic foams the Darcy-extended Forchheimer (DEF) flow and the local thermal non-equilibrium (LTNE) models are employed. The characteristics of laminar, transition and turbulent in the non-foam region of the pipe are captured by considering the appropriate flow models. To affirm the methodology adopted in this work, the results of the present numerical solutions are validated with the available experimental results reported in the literature. Colburn j factor and thermal performance factor are the important factors that decide the performance and efficiency of any heat exchange device. Hence, these parameters are critically evaluated and are observed to increase with increasing pore densities of the metal foams and decrease with increasing flow rates of the fluid. Furthermore, the numerical analysis is extended to obtain the results of wall temperature, Nusselt number, heat transfer enhancement ratio, frictional irreversibility and Bejan number. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
Description
Keywords
Citation
Heat and Mass Transfer/Waerme- und Stoffuebertragung , Vol. , , p. -