Theoretical Investigations of Electronic Structure and Magnetic and Optical Properties of Transition-Metal Dinuclear Molecules
No Thumbnail Available
Date
2020
Authors
Reddy I.R.
Tarafder K.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this work, we have reported the electronic structure, spin state, and optical properties of a new class of transition-metal (TM) dinuclear molecules (TM = Cr, Mn, Fe, Co, and Ni). The stability of these molecules has been analyzed from the vibration spectra obtained by using density functional theory (DFT) calculations. The ground-state spin configuration of the tetra-coordinated TM atom in each molecule has been predicted from the relative total energy differences in different spin states of the molecule. The DFT + U method has been used to investigate the precise ground-state spin configuration of each molecule. We further performed time-dependent DFT calculations to study the optical properties of these molecules. The planar geometric structure remains intact in most of the cases; hence, these molecules are expected to be well adsorbed and self-assembled on metal substrates. In addition, the optical characterization of these molecules indicates that the absorption spectra have a large peak in the blue-light wavelength range; therefore, it could be suitable for advanced optoelectronic device applications. Our work promotes further computational and experimental studies on TM dinuclear molecules in the field of molecular spintronics and optoelectronics. Copyright © 2020 American Chemical Society.
Description
Keywords
Citation
ACS Omega Vol. 5 , 38 , p. 24520 - 24525