Clumped-MCEM: Inference for multistep transcriptional processes
No Thumbnail Available
Date
2019
Authors
Shetty, K.S.
B, A.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Many biochemical events involve multistep reactions. Among them, an important biological process that involves multistep reaction is the transcriptional process. A widely used approach for simplifying multistep reactions is the delayed reaction method. In this work, we devise a model reduction strategy that represents several OFF states by a single state, accompanied by specifying a time delay for burst frequency. Using this model reduction, we develop Clumped-MCEM which enables simulation and parameter inference. We apply this method to time-series data of endogenous mouse glutaminase promoter, to validate the model assumptions and infer the kinetic parameters. Further, we compare efficiency of Clumped-MCEM with state-of-the-art methods Bursty MCEM2 and delay Bursty MCEM. Simulation results show that Clumped-MCEM inference is more efficient for time-series data and is able to produce similar numerical accuracy as state-of-the-art methods Bursty MCEM2 and delay Bursty MCEM in less time. Clumped-MCEM reduces computational cost by 57.58% when compared with Bursty MCEM2 and 32.19% when compared with delay Bursty MCEM. 2019 Elsevier Ltd
Description
Keywords
Citation
Computational Biology and Chemistry, 2019, Vol.81, , pp.16-20