Nucleate pool boiling heat transfer from a flat-plate grooved surface

No Thumbnail Available

Date

2015

Authors

Sathyabhama, A.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This paper presents the experimental investigation of pool boiling heat transfer performance of copperplain and grooved horizontal circular surfaces immersed in saturated water at atmospheric pressure. The effect of the geometric parameters of the groove on boiling heat transfer was studied. From the experimental results, it was observed that the enhanced surfaces have a positive effect on the heat dissipation and the effect is greater than in the case of a plain surface. It was found that the heat dissipation increases with increasing groove depth, decreasing groove angle, and decreasing channel width. The improved heat transfer is attributed to improved bubble dynamics, which are a function of the heat transfer area, bubble escape resistance, and capillary force. The dominance of any of these factors over the other depends on a particular specimen. The modified Rohsenow correlation predicts the present experimental data with an error of 20%. 2015 by Begell House, Inc.

Description

Keywords

Citation

Journal of Enhanced Heat Transfer, 2015, Vol.22, 3, pp.247-265

Endorsement

Review

Supplemented By

Referenced By