Extended Newton-type iteration for nonlinear ill-posed equations in Banach space

dc.contributor.authorSreedeep, C.D.
dc.contributor.authorGeorge, S.
dc.contributor.authorArgyros, I.K.
dc.date.accessioned2020-03-31T08:30:57Z
dc.date.available2020-03-31T08:30:57Z
dc.date.issued2019
dc.description.abstractIn this paper, we study nonlinear ill-posed equations involving m-accretive mappings in Banach spaces. We produce an extended Newton-type iterative scheme that converges cubically to the solution which uses assumptions only on the first Fr chet derivative of the operator. Using general H lder type source condition we obtain an error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060 2076, 2005) for choosing the regularization parameter. 2018, Korean Society for Computational and Applied Mathematics.en_US
dc.identifier.citationJournal of Applied Mathematics and Computing, 2019, Vol.60, pp.435-453en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/11227
dc.titleExtended Newton-type iteration for nonlinear ill-posed equations in Banach spaceen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
33.Extended Newton-type.pdf
Size:
467.65 KB
Format:
Adobe Portable Document Format