Novel porous graphene synthesized through solvothermal approach as high performance electrode material for supercapacitors
No Thumbnail Available
Date
2020
Authors
Sethi M.
Bhat D.K.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A facile solvent mediated chemical route is employed for the fruitful synthesis of porous graphene (PG). The formation of PG is thoroughly characterized by microscopic and spectroscopic techniques. Elemental analysis showed the presence of carbon and oxygen only as elements in the PG sample, indicating the purity of the product. The as synthesized sample is utilized as an energetic electrode material for supercapacitor in 2M KOH aqueous electrolyte. The fabricated symmetrical supercapacitor exhibited a capacitance value of 248.0 F g-1 at an applied current density of 1 Ag-1, and 220.0 F g-1 at a scan rate of 5 mV s-1. The supercapacitor provided an energy density value of 7.3 Wh kg-1 while maintaining a power density of 6405.0 W kg-1 at an applied current density of 8 A g-1. Apart from these values, the supercapacitor device can sustain up to 5000 charge-discharge cycles at a higher applied current density of 8 A g-1, with 96% of initial capacitance retention demonstrating the good rate profile. Hence, considering the above facts, it can be suggested that this material can have high practical utility in supercapacitor application. © 2020 Author(s).
Description
Keywords
Citation
AIP Conference Proceedings , Vol. 2244 , , p. -