Experimental study of convective heat transfer distribution of non-interacting wall and perpendicular air jet impingement cooling on flat surface
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Abstract
An experimental study evaluated heat transfer with perpendicular and wall-impinging air jets on stainless steel foil, for Reynolds numbers Re = 3000, 5000, 8000, and 10000, where the perpendicular jet targets the bottom and the wall jet the top, creating a unique, non-interacting effect. Distances to nozzle diameter ratios for wall jets (S/d = 4, 6, 8, 10) and perpendicular jets (Z/d = 2, 4, 6, 8) were varied. Significant heat transfer increases were noted, with the Nusselt number rising by up to 49.20 % for a Z/d = 6 and S/d = 8 combination at Re = 5000. Improvements ranged from 10.03 % to 49.20 %, peaking when the jets' high heat transfer regions overlapped. Optimal performance for Re = 3000 was at S/d = 10, aligning the wall jet's maximum with the perpendicular jet's stagnation area. For Re = 5000 to 10000, optimal S/d values were 8 and 4 for Z/d = 6, 8 and Z/d = 2, 4, respectively. The Nusselt number increase ranged from 29.21 % to 46.57 % at S/d = 10 for Re = 3000, the highest among all tested values. Wall jet heat transfer downstream increased by 90–105 % over perpendicular jets in corresponding regions. Increasing the wall to perpendicular jet distance improved heat transfer near the stagnation point, suggesting this cooling method for high-density electronics like CPUs and GPUs. © 2024 The Authors
Description
Keywords
Electronic cooling, Heat convection, Nusselt number, Program processors, Reynolds number, Air jet impingement, Convective heat transfer, Flatter surfaces, Heat transfer distributions, Impingement cooling, Impinging air jet, Jet impingement, Jet impingement cooling, Stainless steel foil, Wall jet, Jets
Citation
Case Studies in Thermal Engineering, 2024, 60, , pp. -
