Infinitely Many Trees with Maximum Number of Holes Zero, One, and Two
No Thumbnail Available
Date
2018
Authors
Kola, S.R.
Gudla, B.
Niranjan, P.K.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
An L(2,1)-coloring of a simple connected graph G is an assignment f of nonnegative integers to the vertices of G such that fu-fv2 if d(u,v)=1 and fu-fv1 if d(u,v)=2 for all u,v∈V(G), where d(u,v) denotes the distance between u and v in G. The span of f is the maximum color assigned by f. The span of a graph G, denoted by (G), is the minimum of span over all L(2,1)-colorings on G. An L(2,1)-coloring of G with span (G) is called a span coloring of G. An L(2,1)-coloring f is said to be irreducible if there exists no L(2,1)-coloring g such that g(u)f(u) for all u∈V(G) and g(v)<f(v) for some v∈V(G). If f is an L(2,1)-coloring with span k, then h∈0,1,2,.,k is a hole if there is no v∈V(G) such that f(v)=h. The maximum number of holes over all irreducible span colorings of G is denoted by H(G). A tree T with maximum degree ? having span ?+1 is referred to as Type-I tree; otherwise it is Type-II. In this paper, we give a method to construct infinitely many trees with at least one hole from a one-hole tree and infinitely many two-hole trees from a two-hole tree. Also, using the method, we construct infinitely many Type-II trees with maximum number of holes one and two. Further, we give a sufficient condition for a Type-II tree with maximum number of holes zero. 2018 Srinivasa Rao Kola et al.
Description
Keywords
Citation
Journal of Applied Mathematics, 2018, Vol.2018, , pp.-