Semi-supervised Semantic Segmentation of Effusion Cytology Images Using Adversarial Training
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media Deutschland GmbH
Abstract
In pleural effusion, an excessive amount of fluid gets accumulated inside the pleural cavity along with signs of inflammation, infections, malignancies, etc. Usually, a manual cytological test is performed to detect and diagnose pleural effusion. The deep learning solutions for effusion cytology include a fully supervised model trained on effusion cytology images with the help of output maps. The low-resolution cytology images are harder to label and require the supervision of an expert, the labeling process time-consuming and expensive. Therefore, we have tried to use some portion of data without any labels for training our models using the proposed semi-supervised training methodology. In this paper, we proposed an adversarial network-based semi-supervised image segmentation approach to automate effusion cytology. The semi-supervised methodology with U-Net as the generator shows nearly 12% of absolute improvement in the f-score of benign class, 8% improvement in the f-score of malignant class, and 5% improvement in mIoU score as compared to a fully supervised U-Net model. With ResUNet++ as a generator, a similar improvement in the f-score of 1% for benign class, 8% for the malignant class, and 1% in the mIoU score is observed as compared to a fully supervised ResUNet++ model. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Description
Keywords
Effusion cytology, Image segmentation, Semi-supervised learning
Citation
Lecture Notes in Networks and Systems, 2023, Vol.586 LNNS, , p. 539-551
