Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order

dc.contributor.authorArgyros, I.K.
dc.contributor.authorGeorge, S.
dc.contributor.authorMagreñán Ruiz, Á.A.
dc.date.accessioned2026-02-05T09:34:04Z
dc.date.issued2015
dc.description.abstractWe present a local convergence analysis for general multi-point-Chebyshev-Halley-type methods (MMCHTM) of high convergence order in order to approximate a solution of an equation in a Banach space setting. MMCHTM includes earlier methods given by others as special cases. The convergence ball for a class of MMCHTM methods is obtained under weaker hypotheses than before. Numerical examples are also presented in this study. © 2014 Elsevier B.V. All rights reserved.
dc.identifier.citationJournal of Computational and Applied Mathematics, 2015, 282, , pp. 215-224
dc.identifier.issn3770427
dc.identifier.urihttps://doi.org/10.1016/j.cam.2014.12.023
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/26415
dc.publisherElsevier
dc.subjectBanach spaces
dc.subjectNewton-Raphson method
dc.subjectChebyshev
dc.subjectLocal Convergence
dc.subjectMulti-points
dc.subjectParametric method
dc.subjectRadius of convergence
dc.subjectConvergence of numerical methods
dc.titleLocal convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order

Files

Collections