Estimation of interfacial heat transfer coefficient for horizontal directional solidification of Sn-5wt%pb alloy using genetic algorithm as inverse method

dc.contributor.authorVishweshwara, P.S.
dc.contributor.authorGnanasekaran, N.
dc.contributor.authorArun, M.
dc.date.accessioned2020-03-30T10:18:46Z
dc.date.available2020-03-30T10:18:46Z
dc.date.issued2019
dc.description.abstractIn the present work, a one-dimensional transient solidification heat transfer problem is solved to determine the unknown interfacial heat transfer coefficient (IHTC) at the mold�metal interface using genetic algorithm (GA), an evolutionary and widely known algorithm, as an inverse method. The forward model is numerically solved to obtain the exact temperatures by incorporating the appropriate correlation for the IHTC that varies with time. In order to mimic experiments, the exact temperatures are then perturbed with the standard deviations of 0.01, 0.02, and 0.03. In the inverse estimation, genetic algorithm is used to minimize the objective function, thereby reducing the error between the measured and the simulated temperatures. The study on the performance parameters of the algorithm is also discussed in detail. � Springer Nature Singapore Pte Ltd. 2019.en_US
dc.identifier.citationAdvances in Intelligent Systems and Computing, 2019, Vol.816, , pp.447-459en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/8466
dc.titleEstimation of interfacial heat transfer coefficient for horizontal directional solidification of Sn-5wt%pb alloy using genetic algorithm as inverse methoden_US
dc.typeBook chapteren_US

Files