Experimental and numerical investigation on low-velocity impact response of sandwich structure with functionally graded core

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley and Sons Inc

Abstract

The present research investigates optimizing the impact resistance of functionally graded sandwich structures using experimental and numerical approaches. The low-velocity impact (LVI) responses of functionally graded sandwich composite (FGSC) with different configurations with skin material jute/rubber/jute (JRJ) and core material having epoxy and sea sand by volume fraction of sea sand at 0%, 10%, 20%, and 30%. Sandwich structures were impacted with LVI (5.89, 10.92, and 15.18 m/s), with the impactor dropped from heights of 0.5, 1, and 1.5 m with precompressed spring loads. FGSC samples are considered a deformable body, and the impactor is modeled as a rigid body using commercially accessible dynamic explicit software. The burn-out test and weight method were used to test the core's gradience; both methods' results substantially matched, and the variance in gradation could be observed. The proposed sandwich structure characteristics are examined by energy absorption, peak force, energy loss percentage, and coefficient of restitution. Results showed that SC30S provides greater energy absorption and superior damage resistance when tested on LVI. To evaluate the accuracy of experimental findings in predicting the indentation behavior of the sandwich structure, the finite element analysis was used to compare with the experimental results. According to the examination of these proposed FGSC overall performance, they could potentially be employed as sacrificial materials for LVI applications like claddings to shield major structural components. The systematic approach used in this work serves as a standard for choosing and using FGSC effectively for LVI applications. Highlights: Low-velocity impact behavior of sandwich structures was investigated. Combining flexible skin and epoxy core enhances energy absorption. Based on impact energy levels, impact damage areas were determined. Examined sandwich structure advantages in structural and aerospace uses. In terms of time and cost, the numerical analysis method would be useful. © 2023 Society of Plastics Engineers.

Description

Keywords

Coremaking, Energy absorption, Energy dissipation, Functionally graded materials, Numerical methods, Sandwich structures, Epoxy, Experimental investigations, Finite element analyse, Functionally graded, Impact response, Impactors, Low velocity impact, Numerical investigations, Sandwich composites, Sea sand, Finite element method

Citation

Polymer Composites, 2024, 45, 4, pp. 3225-3242

Collections

Endorsement

Review

Supplemented By

Referenced By