The LEO Archipelago: A system of earth-rings for communications, mass-transport to space, solar power, and control of global warming
No Thumbnail Available
Date
2011
Authors
Meulenberg, A.
Karthik, Balaji, P.S.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Mans quest to get into space is hindered by major problems (e.g., system-development and capital costs, expense of putting mass into orbit, trapped-radiation belts, and environmental impact of a large increase in rocket launches). A multi-purpose low-earth-orbit system of rings circling the earth the LEO ARCHIPELAGOTM is proposed as a means of solving or bypassing many of them. A fiber-optic ring about the earth would be an initial testing and developmental stage for the Ring Systems, while providing cash-flow through a LEO-based, high-band-width, world-wide communication system. A low-earth-orbit-based space-elevator system, Sling-on-a-RingTM, is proposed as the crucial developmental stage of the LEO Archipelago. Being a LEO-based heavy-mass lifter, rather than earth- or GEO-based, it is much less massive and therefore less costly than other proposed space-elevators. With the advent of lower-cost, higher-mass transport to orbit, the options for further space development (e.g., space solar power, radiation, and space-debris dampers, sun shades, and permanent LEO habitation) are greatly expanded. This paper provides an update of the Sling-on-a-Ring concept in terms of new materials, potential applications, and trade-offs associated with an earlier model. The impact of Colossal Carbon Tubes, CCT, a new material with high tensile strength, extremely-low density, and other favorable properties, and other new technologies (e.g., solar-powered lasers, power beaming to near-space and earth, and thermal-control systems) on the development of associated LEO-Ring systems is also explored. The materials effect on the timeline for the system development indicates the feasibility of near-term implementation of the system (possibly within the decade). The Sling-on-a-Ring can provide a less-expensive, environment-friendly mode of access to space. This would pave the way (via eventual operation at >1000 t per day by 2050) for large scale development of space-based technologies. 2011 Elsevier Ltd. All rights reserved.
Description
Keywords
Citation
Acta Astronautica, 2011, Vol.68, 44176, pp.1931-1946