Numerical investigation of offshore wind turbine combined with wave energy converter
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Abstract
The coupled dynamic analysis is performed for three different types of offshore floating platforms combined with a wave energy converter (WEC) mounting a 5-MW NREL (National Renewable Energy Laboratory) wind turbine. The Response Amplitude Operators (RAOs) are analysed for the three concepts of combined wind and wave energy platforms for different wind and wave conditions. The hydrodynamic performance for the three different platforms is conducted considering different load cases. The time domain aero-servo-hydro-elastic tool is used to study the motion responses of the combined system under real operational conditions. The platform’s responses are observed to increase with the increase in the wind speed. In the case of floating hybrid platform, surge responses are minimal for the hybrid spar-tours combination for any load case condition. Minimum surge and sway ensure higher wind power absorption. The study further focuses on the tower base forces and moments to study the impact of wind and waves on the combined floater. Fore-aft shear forces and fore-aft bending moments are higher for the platforms indicating the importance of wind-wave loading. The time domain responses are further used as the transfer function to predict the most probable maximum values of motion amplitude expected to occur during the life-time of the structure which can be used for designing a floating wind turbine (FWT) against overturning in high waves. The long-term models are constructed using various short-term situations expected to occur during the structure’s life-time and weighing them appropriately. The long-term distribution uses North Atlantic wave data, and short-term responses are calculated considering Rayleigh distribution. A brief comparative study of the three combined offshore floaters is performed to understand the structural integrity, power performance and dynamic motions of the floating wind energy platform combined with WECs. © 2023, The Author(s), under exclusive licence to Sociedade Brasileira de Engenharia Naval.
Description
Keywords
Offshore oil well production, Offshore wind turbines, Shear flow, Wave energy conversion, Wind, Combined energy, Combined energy platform, Coupled dynamic analysis, Floating wind turbines, Life-times, Numerical investigations, Response amplitude operator, Wave energy, Wave energy converters, Wind power
Citation
Marine Systems and Ocean Technology, 2023, 18, 46054, pp. 14-44
