Experimentation and Statistical Prediction of Dust Emission in Iron Ore Mines using Supervised Machine Learning (Regression) Modelling
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
World Researchers Associations
Abstract
In India, the mine area and the processing plant of materials such as iron ore and coal will cause dust emissions. The fugitive dust emission creates a hazardous working environment for the workers. Dust emissions will cause pulmonary-related diseases to the workers and also to the people living in nearby areas of the mine. Environmental effects such as air pollution occur due to the dispersion of particulate matter over the permissible limit in the processing area. This study evaluates dust emission levels and air quality control measures in an iron ore mine (A), Karnataka, India. Fugitive and workplace dust sampling was conducted following DGMS and MoEF and CC guidelines, with a specific focus on PM10 and PM2.5 particulate matter. Measurements revealed that dust concentrations in several mining areas exceeded the permissible limit of 1200 ?g/m³ as per the National Ambient Air Quality Standards (NAAQS, 2009). To analyze and predict these concentrations, supervised machine learning (regression) modeling including linear, polynomial (order 2) and polynomial (order 2) models, was applied. The results indicated that a third-order polynomial regression model provided the best fit for predicting dust concentrations, demonstrating lower error. The study emphasizes the necessity of more robust dust suppression measures including installing a dry fog dust suppression system, to guarantee safe working conditions and adherence to environmental regulations, even in the face of efforts to reduce dust exposure. © 2025, World Researchers Associations. All rights reserved.
Description
Keywords
dust, emission control, experimental study, iron ore, machine learning, particulate matter, supervised learning
Citation
Disaster Advances, 2025, 18, 5, pp. 57-70
