Effect of Surathkal Beach Sand on Mechanical Properties of Polymer Composites
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
Although beach sand is available in abundance, its usage in the structural applications has been limited. Prior studies betray that the sand taken in a nanoparticle size for the preparation of polymer nanocomposites yields in improved mechanical and physical polymer properties, also addition of nanophase structure to the polymer has been found to be increasing toughness and cyclic fatigue resistance of the epoxy polymer. The present work uses beach sand as the filler for the reinforced epoxy matrix. Sand-epoxy composites, with different particle sizes (150, 300, 420 μm) and varying filler percentages (5, 10 and 15%) were investigated for mechanical properties. Beach sand nano-particles were considered as high-potential filler materials in the present study owing to their molecular size in a reinforcement and polymer nanocomposites made out of them offer the possibility to develop novel materials with unique properties. As a result, the mixture of 10% filler sand with the particle size of 150 μm showed highest tensile and compressive strength and addition of sand particles beyond 10% led to creation of voids, thereby resulting in decreased strength. It is also noticed that, uniform distribution of sand particles within the matrix and interfacial bonding was the main contributing factors for the increased mechanical properties. The FE analysis of sand epoxy composites was also carried out using ABAQUS finite element analysis tool for flexural failure analysis. Simulations were recorded at various instances till failure. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
Description
Keywords
ABAQUS-Finite element tool, Beach sand, Density, Polymer composite, SEM (Scanning Electron Microscope)
Citation
Springer Proceedings in Materials, 2025, Vol.72, , p. 391-400
