Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sundararaman, S."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Kinetics and regression analysis of phenanthrene adsorption on the nanocomposite of CaO and activated carbon: Characterization, regeneration, and mechanistic approach
    (Elsevier B.V., 2021) Aravind Kumar, J.; Krithiga, T.; Vijai Anand, K.; Sundararaman, S.; Karthick Raja Namasivamyam, S.; Annam Renita, A.A.; Hosseini-Bandegharaei, A.; Praveenkumar, T.R.; Manivasagan, M.; Bhat, N.S.; Dutta, S.
    In the present study, calcium oxide supported on activated carbon (CaO@AC) nanocomposite was synthesized using Basil leaf extract as a promoter and used to remove phenanthrene, an environmental pollutant, from aqueous solution. The activated carbon (AC) was prepared by the carbonization of Palm shells under pyrolytic conditions. The CaO@AC nanocomposite was characterized by FTIR, SEM-EDX, BET, and PXRD. The characterized CaO@AC nanocomposite was employed as an adsorbent for selective removal of phenanthrene from wastewater, maintaining the optimized conditions at initial phenanthrene concentration (5 mg/L), catalyst dosage (1 g), temperature (30 °C), and pH (7.6) for all batches. The adsorption isotherm and the kinetic studies for regression analysis were well fitted for the Freundlich model (R2 = 0.9956) and non-linear Pseudo (II order) mechanism (R2 = 0.9942). The results showed that the type IV linear form of pseudo-II order kinetic expression was inadequate for the kinetic rate parameters compared to the type I - III models. The CaO@AC was demonstrated as an inexpensive, scalable, recyclable, and eco-friendly adsorbent material for removing phenanthrene from wastewater. © 2021 Elsevier B.V.

Maintained by Central Library NITK | DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify