Browsing by Author "Sreenivasa, M.Y."
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Bacteriological synthesis of iron hydroxysulfate using an isolated Acidithiobacillus ferrooxidans strain and its application in ametryn degradation by Fenton's oxidation process(2019) Bhaskar, S.; Manu, B.; Sreenivasa, M.Y.The investigation reports the application of biogenic jarosite, an iron hydroxy sulfate mineral in Fenton's Oxidation process. Ametryn, a herbicide detrimental to aquatic life and also to human is treated by Fenton's oxidation process using synthesized iron mineral, jarosite. The jarosite synthesis was carried out by using an isolated Acidithiobacillus ferrooxidans bacterial strain with ferrous as an iron supplement. The isolated strain was characterized by molecular techniques and biooxidation activity to ferrous to ferric iron was checked. On Fenton's treatment ametryn degradation upto 84.9% and COD removal to the extent of 56.1% was observed within 2 h of treatment and the reaction follows the pseudo first order kinetics with the curve best fit. The slight increase in kinetic rate constant on jarosite loading rate increase from 0.1 g/L to 0.5 g/L with H 2 O 2 dosage of 100 mg/L confirms that jarosite has a catalytic role in the removal of ametryn. Mass spectroscopy analysis of treated synthetic ametryn solution at various intervals reveal the degradation follows dealkylation and hydroxylation pathway with the formation of three major intermediate compounds discussed here. 2018 Elsevier LtdItem Bacteriological synthesis of iron hydroxysulfate using an isolated Acidithiobacillus ferrooxidans strain and its application in ametryn degradation by Fenton's oxidation process(Academic Press, 2019) Bhaskar, S.; Manu, B.; Sreenivasa, M.Y.The investigation reports the application of biogenic jarosite, an iron hydroxy sulfate mineral in Fenton's Oxidation process. Ametryn, a herbicide detrimental to aquatic life and also to human is treated by Fenton's oxidation process using synthesized iron mineral, jarosite. The jarosite synthesis was carried out by using an isolated Acidithiobacillus ferrooxidans bacterial strain with ferrous as an iron supplement. The isolated strain was characterized by molecular techniques and biooxidation activity to ferrous to ferric iron was checked. On Fenton's treatment ametryn degradation upto 84.9% and COD removal to the extent of 56.1% was observed within 2 h of treatment and the reaction follows the pseudo first order kinetics with the curve best fit. The slight increase in kinetic rate constant on jarosite loading rate increase from 0.1 g/L to 0.5 g/L with H2O2 dosage of 100 mg/L confirms that jarosite has a catalytic role in the removal of ametryn. Mass spectroscopy analysis of treated synthetic ametryn solution at various intervals reveal the degradation follows dealkylation and hydroxylation pathway with the formation of three major intermediate compounds discussed here. © 2018 Elsevier LtdItem Bioleached laterite nano iron catalyst (BLaNFeCs)-based Fenton’s degradation of selective dyes in water(IWA Publishing, 2022) Shivaswamy, B.; Manu, B.; Sreenivasa, M.Y.Iron nanocatalyst for its potential application as Fenton’s catalyst for the degradation of methylene blue dye was synthesized with the fruit extract of Citrus maxima using bioleached laterite iron as a precursor. Synthesized iron particles were characterized suitably and their catalytic role in the degradation of methylene blue and rhodamine B by Fenton’s oxidation was evaluated. The synthesized nanocatalyst exhibits heterogeneous catalytic properties in the degradation of methylene blue and rhodamine B with a degradation efficiency of 93.6 and 91.3%, respectively. Observed rate constants are consistent with the increase in catalyst dosage as it speeds up the reaction. The degradation of methylene blue and rhodamine B follows a pseudo-first-order reaction with a linear fit. Reusability studies confirm the reduction in the catalytic efficiency of the synthesized iron nanoparticles after five consecutive cycles. © 2022 The Authors.Item Bioleaching of iron from fly ash using a novel isolated Acidithiobacillus ferrooxidans strain and evaluation of catalytic role of leached iron in the Fenton’s oxidation of Cephelaxin(Scientific Publishers, 2020) Bhaskar, S.; Manu, B.; Sreenivasa, M.Y.Iron is the sole energy source for the acidophilic bacterium Acidithiobacillus ferrooxidans. Feeding indirect iron source to this bacteria results in leaching of iron from complex minerals. In this study fly ash, a waste is fed to the isolated bacteria under stress condition and is made to recover the traces of iron present in the fly ash for its application as a Fenton’s catalyst to degrade Cephalexin. The investigation evaluates the leaching potential of a novel isolated strain Acidithiobacillus ferrooxidans BMSNITK17 in leaching iron from fly ash. About 89 mg/L of iron is recovered within the initial five days of inoculation. It is observed that the rate of metabolism of bacteria is very slow with fly ash as source. Catalytic efficiency of recovered iron was investigated to degrade Cephalexin, a major waste found in pharmaceutical and hospital discharge. About 87.98% of Cephalexin is degraded in first two hours with COD reduction of 74.21%. Reaction follows pseudo-first order kinetics with rate constant 0.017/min. © 2020 Scientific Publishers. All rights reserved.Item Bioleaching of iron from laterite soil using an isolated Acidithiobacillus ferrooxidans strain and application of leached laterite iron as Fenton’s catalyst in selective herbicide degradation(Public Library of Science, 2021) Bhaskar, S.; Manu, B.; Sreenivasa, M.Y.A novel isolated strain Acidithiobacillus ferrooxidans BMSNITK17 has been investigated for its bioleaching potential from lateritic soil and the results are presented. System conditions like pH, feed mineral particle size, pulp density, temperature, rotor speed influences bioleaching potential of Acidithiobcillus ferrooxidans BMSNITK17 in leaching out iron from laterite soil. Effect of sulfate addition on bioleaching efficiency is studied. The bioleached laterite iron (BLFe’s) on evaluation for its catalytic role in Fenton’s oxidation for the degradation of ametryn and dicamba exhibits 94.24% of ametryn degradation and 92.45% of dicamba degradation efficiency. Fenton’s oxidation performed well with the acidic pH 3. The study confirms the role of Acidithiobacillus ferrooxidans in leaching iron from lateritic ore and the usage of bioleached lateritic iron as catalyst in the Fenton’s Oxidation. © 2021 S et al.Item Green Synthesis of Bioleached Flyash Iron Nanoparticles (GBFFeNP) Using Azadirachta Indica Leaves and Its Application as Fenton’s Catalyst in the Degradation of Dicamba(Springer Science and Business Media Deutschland GmbH, 2021) Bhaskar, S.; Manu, B.; Sreenivasa, M.Y.Fly ash made its suitable application in the waste management and remediation application. This article presents the synthesis of nanoiron particles using bioleached fly ash iron and its application as Fenton’s catalyst in the degradation of an herbicide dicamba. Novel isolated bacterial strain Acidithiobacillus Ferrooxidans BMSNITK (MG 271,840) was used to recover iron from fly ash and green synthesis of fly ash iron nanoparticles was successfully carried out using Azadirachta indica. Synthesized iron nanoparticles were characterized with X-ray diffraction and electron microscopy and the catalytic role of bioleached fly ash nanoparticles was evaluated based on the degradation of target pollutant. Hydrogen peroxide and COD were considered as the indicating factors for tracing the reaction progress and degradation resulting 97.81% of dicamba degradation within 90 min. Study confirms the green synthesis of bioleached fly ash iron nanoparticle and its application in Fenton’s oxidation. © 2021, Springer Nature Singapore Pte Ltd.Item Green synthesis of granular activated carbon/zinc ferro nanocomposites-based bioleached laterite iron (BLaFe) for the removal of Rhodamine B in water using adsorption–Fenton’s oxidation process(IWA Publishing, 2023) Bhaskar, S.; Rashmishree, K.N.; Manu, B.; Sreenivasa, M.Y.Novel cost-effective catalyst granular activated carbon (GAC)-based zinc ferro nanocomposites for the heterogeneous Fenton’s oxidation of dye were synthesized using bioleached laterite iron (BLFe) as a precursor and Psidium gujava leaf extract. Synthesized nanocomposites were characterized using SEM, EDS, XRD and BET surface area analysis. The degradation of Rhodamine dye was carried out with nanocomposites using adsorption–Fenton’s oxidation process. The catalytic role of nano-composites in Fenton’s oxidation of Rhodamine B (RhB) was investigated and reported. The maximum dye removal of 96.2% was observed with 64.2% COD removal within 200 min of treatment. An increase in nanocomposite dosage has a positive effect on dye removal marking 5 g/L as an optimum dosage. Adsorption studies reveal that RhB removal using BLFe-based GAC/zinc ferro composites fits the Freundlich Adsorption Isotherm model with an adsorption capacity of 47.81 mg/g. A com-bination of adsorption and Fenton’s oxidation has resulted in higher removal efficiency with nanocomposite material. Reusability studies confirm that the spent catalyst can be reused for five cycles. © 2023 The Authors.Item Non-ferrous Fenton’s Oxidation of Ametryn Using Bioleached E-waste Copper as a Catalyst(Springer Science and Business Media Deutschland GmbH, 2022) Bhaskar, S.; Manoj, A.; Manu, B.; Sreenivasa, M.Y.; Mudipu, V.Shake flask study on bioleaching of copper from e-waste using novel isolated bacterial strain Acidithiobacillus ferrooxidans BMSNITK17 was conducted and reported. Under suitable conditions, about 77% of copper was recovered. The process was optimized with several influencing parameters like pulp density, pH, inoculum, temperature, and shake flask speed. To find the vital variables that affect copper dissolution, correlation studies and principal component analysis (PCA) were performed. Investigation on the application of recovered copper as a catalyst in Fenton’s oxidation of ametryn proved the catalytic role of copper with 87% of ametryn degradation efficiency. This study confirms the usage potential of acidophilic bacterial strain toward recovery of valuable metals from e-waste and its application as a catalyst in advanced oxidation process for the degradation of organic pollutants. Graphical Abstract: [Figure not available: see fulltext.] © 2022, The Minerals, Metals & Materials Society.Item Sustainable replacement of EDTA–Biojarosite for commercial iron in the Fenton’s and UV–Fenton’s degradation of Rhowedamine B – a process optimization using Box–Behnken method(IWA Publishing, 2022) Bhaskar, S.; Rashmishree, K.N.; Manu, B.; Sreenivasa, M.Y.Biojarosite as a replacement for commercial iron catalyst in the oxidative degradation of the dye Rhodamine B was confirmed and established. Investigations on the oxidative degradation by Fenton’s oxidation and UV–Fenton’s oxidation with EDTA at neutral pH were conducted and degradation of target compound was evaluated. UV–Fenton’s oxidation was shown to be efficient over Fenton’s oxidation in the degradation of Rhodamine B with removal efficiency of 90.0%. Design of Experiments was performed with Box–Behnken design. Investigation was conducted for the predicted values separately for both Fenton’s oxidation and UV–Fenton’s oxidation and the Rhodamine B removal was taken as response. Variable parameters biojarosite, H2O2 dosage and EDTA were optimized in the range of 0.1–1 g/L, 2.94–29.4 mM and 10–100 mM, respectively. A quadratic regression model is fitted for both Fenton’s and UV–Fenton’s oxidation. Analysis of variance (ANOVA) is performed and model fit is discussed. © 2022 The Authors.Item Synthesis of plant-based biogenic jarosite nanoparticles using Azadirachta indica and Eucalyptus gunni leaf extracts and its application in Fenton degradation of dicamba(Editorial Office of Water Science and Engineering, 2024) Bhaskar, S.; Manu, B.; Sreenivasa, M.Y.; Manoj, A.Bio-jarosite, an iron mineral synthesized biologically using bacteria, is a substitute for iron catalysts in the Fenton oxidation of organic pollutants. Iron nanocatalysts have been widely used as Fenton catalysts because they have a larger surface area than ordinary catalysts, are highly recyclable, and can be treated efficiently. This study aimed to explore the catalytic properties of bio-jarosite iron nanoparticles synthesized with green methods using two distinct plant species: Azadirachta indica and Eucalyptus gunni. The focus was on the degradation of dicamba via Fenton oxidation. The synthesized nanoparticles exhibited different particle size, shape, surface area, and chemical composition characteristics. Both particles were effective in removing dicamba, with removal efficiencies of 96.8% for A. indica bio-jarosite iron nanoparticles (ABFeNPs) and 93.0% for E. gunni bio-jarosite iron nanoparticles (EBFeNPs) within 120 min of treatment. Increasing the catalyst dosage by 0.1 g/L resulted in 7.6% and 43.0% increases in the dicamba removal efficiency for EBFeNPs and ABFeNPs with rate constants of 0.025 min−1 and 0.023 min−1, respectively, confirming their catalytic roles. Additionally, the high efficiency of both catalysts was demonstrated through five consecutive cycles of linear pseudo-first-order Fenton oxidation reactions. © 2023 Hohai University
