Browsing by Author "Shee, D."
Now showing 1 - 20 of 23
- Results Per Page
- Sort Options
Item Activated carbon- supported Vanado-nickelate (IV) based hybrid materials for energy application(Elsevier Ltd, 2021) Maity, S.; BM, N.; Kella, T.; Shee, D.; Das, P.P.; Mal, S.S.The rapid development of supercapacitor (SC) technology leads to increased demand for nanofabrication of novel and effective electroactive hybrid materials for next-generation energy storage devices. Herein, nickel tetradecavanadate, K2H5[NiV14O40](NiV14), is doped into porous activated carbon (AC), for the first time, in different wt.% in order to investigate the homogeneous loading of the inorganic metal-oxide component on the AC matrix. The resulting complex, AC-NiV14, is found to have possessed an enhanced electrochemical characteristic (for both symmetric and asymmetric SC cell), which operates at a significantly higher potential of 1.2 V. The combination of the double-layer capacitance (EDLC) and the redox-active polyoxometalate cluster leads to an intrinsic increase in specific capacitance (capacity) (from 45.3 Fg?1 (54.4 Cg?1) for AC to 316 Fg?1 (379.2 Cg?1) for 15 wt.% AC-NiV14 at a current density of 1 Ag?1). It was also observed that there is an increase of 20% in the operating voltage compared to conventional AC supercapacitors with acidic aqueous electrolytes. Firstly, symmetric supercapacitor's electrochemical performances of various wt.% of NiV14 composition were studied in acidic aqueous electrolyte (0.5 M H2SO4) solution. We observed that the 15 wt.% of AC-NiV14 hybrid electrode showed remarkable specific energy value (~63.2 Wh kg?1) compared with pristine AC and NiV14 electrodes, separately. Besides, the asymmetric layout (AC//AC-NiV14) increased the potential window up to 1.5 V and enhanced the specific energy and power values (90.1 Whkg?1 and 2400 Wkg?1, respectively), with 98% coulombic efficiency. Meanwhile, the AC-NiV14//NiV14 asymmetric cell possesses a specific capacitance (capacity) of 375 Fg?1 (450 Cg?1) with a maximum power of 3140 Wkg?1 at the high current density of 2 Ag?1. © 2021 Elsevier LtdItem Asymmetric polyoxometalate-polypyrrole composite electrode material for electrochemical energy storage supercapacitors(Elsevier B.V., 2022) Anandan Vannathan, A.; Chandewar, P.R.; Shee, D.; Mal, S.Nowadays, metal-oxides impregnated conducting polymers as electrode materials are attracted much attention due to their higher stability. Here, the metal-oxide cluster, polyoxometalate (K5H2[PV4W8O40]·11H2O, PV4W8), was introduced into the polypyrrole (PPy) matrix to overcome the polymers stability issues, and thus, the resulting novel PV4W8/PPy (symmetric) composite electrode has been reported. XPS confirmed the presence of all atoms on the polymer backbone with respective oxidation states. Nevertheless, doping of PV4W8 on the conductive PPy matrix's surface can affectively improve the ion's transfer. Finally, the asymmetric PV4W8-PPy/PPy composite exhibits a prodigious specific capacitance of 291 F g−1, larger than the PPy (90.01 F g−1) and PV4W8 (39.03 F g−1) at 0.4 A g−1 current density. The PV4W8-PPy/PPy (asymmetric) electrode showed excellent cycle stability. However, a symmetric supercapacitor device based on PV4W8/PPy composite possesses a specific capacitance of 195.27 F g−1 and an energy density of 8.94 Wh kg−1 at the same current density as PV4W8-PPy/PPy (asymmetric) electrode with remarkable cycle stability. © 2021 Elsevier B.V.Item Electrochemical performance of activated carbon-supported vanadomolybdates electrodes for energy conversion(Elsevier Ltd, 2021) Maity, S.; Anandan Vannathan, A.; Kella, T.; Shee, D.; Das, P.P.; Mal, S.Reinforcing polyoxomolybdates (POMs) into the activated carbon (AC) template engenders a nanohybrid electrode material for high-performance supercapacitor applications. Herein, a first-time novel integration of two polyoxometalates ([PVMo11O40]4-, [PV2Mo10O40]5-) with AC has been demonstrated, and their structural and electrochemical performances were analyzed. AC-VMo11 composite displayed an enhanced capacitance of 450 Fg-1 with an improved energy density of 59.7 Whkg-1. Furthermore, the symmetric supercapacitor cell for AC-VMo11 and AC-V2Mo10 showed high cell capacitances of 38.8 and 20.01 mF, respectively, alongside 99.99% capacitance retention of over 5000 cycles. In addition, the influence of ionic liquid as an electrolyte on AC-V2Mo10 based supercapacitor cell was investigated in tetrabutylammonium bromide (TBAB) electrolyte solution. © 2021 Elsevier Ltd and Techna Group S.r.l.Item Fabrication of supercapacitor electrode material using carbon derived from waste printer cartridge(Springer Science and Business Media Deutschland GmbH, 2024) Biradar, B.R.; Maity, S.; Chandewar, P.R.; Shee, D.; Das, P.P.; Mal, S.S.Transforming recyclable materials into a suitable product is an important area of research nowadays. This report demonstrates that carbon material derived from waste printer cartridges can be exploited to fabricate electrochemical cells—particularly supercapacitors (SCs). SCs are electrochemical energy storage devices currently attracting much attention in the research community due to their salient features, such as cost-effectiveness, extended cycle stability, and durability. Here, we report the results of thoroughly examining the effects of acidic, basic, and neutral aqueous electrolytes on printer waste carbon electrode material in SC efficiency. In our work, the waste carbon collected from used printer cartridges shows a specific capacitance of 178.4 F/g with energy and power density of 24.77 Wh/kg and 999.68 W/kg, respectively, at 0.5 A/g current density in acidic (1 M H2SO4) electrolyte medium. Moreover, it exhibited very promising capacitance of 135.04 F/g and 87.04 F/g in basic (1 M LiOH) and neutral (1 M NaCl) electrolyte medium, respectively, at 0.8 A/g current density with considerably better cycle stability. In an acidic medium, printer waste carbon drives a DC motor for 1 min with a three-cell series arrangement. The properties of that waste carbon (extracted from the cartridges) are similar to high-rate activated carbon available commercially. Graphical Abstract: (Figure presented.). © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.Item High areal capacitance polyoxotungstate-reduced graphene oxide-based supercapacitors(Elsevier B.V., 2023) Biradar, B.R.; Maity, S.; Chandewar, P.R.; Shee, D.; Das, P.P.; Mal, S.S.The modern lifestyle has driven the advent of high-power electronic gadgets to need high-efficiency energy storage devices. Towards that goal, reduced graphene oxide (rGO) mediated polyoxometalates (POMs) based electrode materials are increasingly showing promising performance for building efficient energy storage devices primarily due to their redox properties. In this report, the silicotungstate [K5[SiVW11O40]. nH2O (SiVW11) embedded rGO nanocomposites as electrode materials in supercapacitor applications were synthesized via chemical and hydrothermal methods. The synthesized nanocomposites were characterized by various techniques, such as Fourier-Transform-Infrared (FTIR) Spectroscopy, Powder X-ray Diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS), Thermogravimetric Analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) measurement. The nanocomposite's electrochemical properties were examined by adopting a two-electrode setup with cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) in a 0.5 M H2SO4 electrolyte medium. The hydrothermally reduced graphene oxide (HrGO) nanocomposite exhibited a noticeable surge in areal capacitance of 377.4 mF/cm2 at a current density of 1.5 mA/cm2. The resulting composite had 52.4 µWh/cm2 and 1500 µW/cm2 as energy and power density, respectively at 1.5 mA/cm2 current density. In addition, the capacitance retention is over 81% after 5000 cycles at a current density of 9 mA/cm2. The highest specific power of 5000 µW/cm2 was obtained at 5 mA/cm2 current density. On the other hand, chemically reduced graphene (CrGO) nanocomposite showed an areal capacitance of 277.2 mF/cm2 at the same current density. As a result, the SiVW11 clusters coupled with the rGO increase the areal capacitance of nanocomposites with exceptional electrical and mechanical stability. From an application standpoint, both composites were employed successfully for running a DC motor in a series cell connection. © 2023 Elsevier B.V.Item High-performance electrochemical supercapacitors based on polyoxometalate integrated into polyaniline and activated carbon nanohybrid(Springer Science and Business Media Deutschland GmbH, 2023) Anandan Vannathan, A.A.; Kella, T.; Shee, D.; Mal, S.S.Polyaniline (PANI) and carbonaceous materials and metallic compounds have played a significant role in energy storage and conversion devices. PANI has demonstrated tremendous potential in the supercapacitor industry due to its high specific capacitance, high flexibility, and economical price. The CPs damage the hierarchical structure during the charging and discharging process and start swelling. Thus, incorporating polyoxometalates (POMs) into the conducting polymer matrix increases the stability of the electrode material. Here, we have demonstrated a comparative study of two newly synthesized composite materials consisting of K5H2[PV4W8O40] ·11H2O, (PV4W8) POM incorporated into two different supports, such as pseudocapacitive polyaniline (PANI) and EDLC activated carbon (AC) matrix. It was observed that the PANI-PV4W8 composite exhibited excellent capacitance nature at 0.5 M H2SO4 electrolyte solution than AC-PV4W8. The PANI-PV4W8 composite demonstrated the specific capacitance of 584 F g−1 at 0.8 A g−1. The composite also exhibited energy and power density of 81Wh kg−1 and 1598 W kg−1, respectively. Besides, the composite shows 93.13% capacity retention after 4500 cycles by cyclic voltammetry measurement at a 500 mV s−1 scan rate. Furthermore, the AC-PV4W8 showed a specific capacitance of 62 F g−1 at the current density of 0.6 A g−1. Interestingly, The PANI-PV4W8 composite could glow up the red and yellow LED bulb for more than a minute, suggesting a promising electrode material for practical supercapacitor purposes. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item High-performance hybrid supercapacitor-immobilized Wells-Dawson polyoxometalates on activated carbon electrodes(Royal Society of Chemistry, 2023) Madhusree, J.E.; Chandewar, P.R.; Shee, D.; Mal, S.S.The nanofabrication of electroactive hybrid materials for next-generation energy storage devices is becoming increasingly significant as supercapacitor (SC) technology develops rapidly. The present study utilizes activated carbon (AC) templates reinforced with Wells-Dawson polyoxotungstates (POMs) to produce nanohybrid electrodes for high-performance supercapacitors. This study analyzes Wells-Dawson polyoxotungstates (P2W18) for the first time integrated with AC, and its structural and electrochemical performances are discussed. First, the electrochemical performances of symmetric supercapacitors were characterized in an acidic aqueous electrolyte (0.5 M H2SO4). It was observed that a supercapacitor cell containing the 5 wt% AC-P2W18 hybrid symmetric displayed a noteworthy specific capacitance of 289 F g−1 and a remarkable energy density of 40 W h kg−1. Moreover, 5% AC-P2W18 symmetric supercapacitor cells showed 89% cyclic stability over 4000 cycles. Three LED lights were charged onto the electrode. The LEDs continued to illuminate continuously for red until 160 seconds, yellow until 20 seconds, and blue until 10 seconds after removing the electrode from the electrochemical workstation, demonstrating the device's power and energy density. © 2023 The Royal Society of Chemistry.Item Imidazolium cation linkers of polyoxomolybdate-polypyrrole nanocomposite electrode-based energy storage supercapacitors(Elsevier Ltd, 2022) Muhammed Anees, P.K.; Anandan Vannathan, A.A.; Abhijith, M.B.; Kella, T.; Shee, D.; Mal, S.S.The electrochemical properties of a new hybrid electrode, liquid-polyoxometalate-polypyrrole (BMIM-PVMo11-PPy) have been studied. The H4[PVMo11O40] (PVMo11) was combined with 1-Butyl-3-methyl-imidazolium (BMIM) ionic liquid and then doped on the polypyrrole (PPy) surface. In order to investigate the interaction between the BMIM, PVMo11, and PPy compound was characterized using various analytical techniques, such as Infrared spectroscopy, thermal stability analysis, powder X-ray diffraction, multinuclear NMR (1H and 13C), FESEM, EDX, and surface adsorption studies. The electrochemical performance of the BMIM-PVMo11-PPy composite material has been tested in an aqueous 0.25 M H2SO4 electrolytic solution. The BMIM-PVMo11-PPy composite exhibits the highest specific capacitance of 527.39 F g−1 at a current density of 1 A g−1, along with remarkable specific energy and power of 51.07 Wh kg−1 and 1078.96 W kg−1, respectively. The BMIM-PVMo11-PPy composite was observed to light up red and blue color LED bulbs for 66 and 16 s, respectively, with 84 mg of sample coated on carbon cloth, suggesting an incredible specific power of that material. © 2021 Elsevier B.V.Item Improved electrochemical performance of graphene oxide supported vanadomanganate (IV) nanohybrid electrode material for supercapacitors(2020) Kumari, S.; Maity, S.; Vannathan, A.A.; Shee, D.; Das, P.P.; Mal, S.S.Graphene oxide (GO)-supported polyoxometalates (POMs) have been considered as promising electrode materials for energy storage applications due to their ability to undergo fast and reversible redox reactions. Herein, vanadomanganate-GO composites (K7MnIVV13O38.18H2O-GO with 2:1 and 4:1 ratio) were investigated for use as potential electrode materials in supercapacitors (SCs). The K7MnIVV13O38.18H2O (MnV13) was synthesized and anchored on GO through electron transfer interaction and electrostatic interaction to make the composite electrodes for the present study. All synthesized electrode materials were fully characterized by various techniques, e.g., Fourier Transform Infrared (FTIR) Spectroscopy, Powder X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDS) and High Resolution-Transmission Electron Microscopy (HR-TEM). The electrochemical properties of MnV13/GO composites with different MnV13/GO ratios were investigated by two-electrode cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) in different electrolytes. The MnV13/GO composite of ratio 2:1 in 1 M LiCl electrolyte and that of ratio 4:1 in 1 M Na2SO4 electrolyte showed significant specific capacitance values of 269.15 F/g and 387.02 F/g, respectively and energy density of 37.38 Wh/kg and 53.75 Wh/kg, respectively for a scan rate of 5 mV/s. Interestingly, the 1:1 (MnV13/GO) composite in 1 M Na2SO4 and 1 M LiCl electrolytes showed very low specific capacitance values as the deposition of MnV13 on GO was not sufficient, as indicated by FTIR and SEM. Thus, it is evident that the specific capacitance value of these composite materials depends on the amount of MnV13 deposited on GO and these composite materials exhibit the potential to improve the performance of GO-based SCs. 2019Item Improved electrochemical performance of graphene oxide supported vanadomanganate (IV) nanohybrid electrode material for supercapacitors(Elsevier Ltd, 2020) Kumari, S.; Maity, S.; Anandan Vannathan, A.A.; Shee, D.; Das, P.P.; Mal, S.S.Graphene oxide (GO)-supported polyoxometalates (POMs) have been considered as promising electrode materials for energy storage applications due to their ability to undergo fast and reversible redox reactions. Herein, vanadomanganate-GO composites (K7MnIVV13O38.18H2O-GO with 2:1 and 4:1 ratio) were investigated for use as potential electrode materials in supercapacitors (SCs). The K7MnIVV13O38.18H2O (MnV13) was synthesized and anchored on GO through electron transfer interaction and electrostatic interaction to make the composite electrodes for the present study. All synthesized electrode materials were fully characterized by various techniques, e.g., Fourier Transform Infrared (FTIR) Spectroscopy, Powder X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDS) and High Resolution-Transmission Electron Microscopy (HR-TEM). The electrochemical properties of MnV13/GO composites with different MnV13/GO ratios were investigated by two-electrode cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) in different electrolytes. The MnV13/GO composite of ratio 2:1 in 1 M LiCl electrolyte and that of ratio 4:1 in 1 M Na2SO4 electrolyte showed significant specific capacitance values of 269.15 F/g and 387.02 F/g, respectively and energy density of 37.38 Wh/kg and 53.75 Wh/kg, respectively for a scan rate of 5 mV/s. Interestingly, the 1:1 (MnV13/GO) composite in 1 M Na2SO4 and 1 M LiCl electrolytes showed very low specific capacitance values as the deposition of MnV13 on GO was not sufficient, as indicated by FTIR and SEM. Thus, it is evident that the specific capacitance value of these composite materials depends on the amount of MnV13 deposited on GO and these composite materials exhibit the potential to improve the performance of GO-based SCs. © 2019Item In situ vanadophosphomolybdate impregnated into conducting polypyrrole for supercapacitor(Elsevier Ltd, 2020) Anandan Vannathan, A.A.; Maity, S.; Kella, T.; Shee, D.; Das, P.P.; Mal, S.S.The fast modernization and advancement in lifestyle increase the consumption of power daily due to all innovative technologies, e.g., hybrid vehicles, solar cells, smart power grid, communication devices, artificial hearts, etc. Conducting organic polymer-based energy storage devices had attracted much attention due to the conductive nature for a long time. However, its application has been restricted because of swelling and shrinking capability during the charge and discharge cycle. The combination of redox-active inorganic metal oxides, such as polyoxometalates (multi-metal oxide cluster) with conduction polymers, could enhance the material's stability due to its fast multi-electron redox property. Here, we report the two polypyrroles combined vanadophosphomolybdates, namely PPy-H4[PVMo11O40] and PPy-H5[PV2Mo10O40] nanohybrid electrode materials. The PPy-H5[PV2Mo10O40] electrode material behaves as pseudocapacitance and can deliver an excellent capacitance of 561.1 F/g in 0.1 M H2SO4 electrolyte solution at a 0.2 A/g current density, indicating capacitive composite material. The electrochemical impedance spectroscopy (EIS) reveals that PPy-H5[PV2Mo10O40] is more capacitive than PPy-H4[PVMo11O40] and PPy with equivalent series resistance (ESR) of 5.74 ?. The cell capacitance of PPy-H5[PV2Mo10O40] and PPy-H4[PVMo11O40] are found to be 5.38 and 9.15 mF, stipulating in small SC cell application. Likewise, the PPy-H5[PV2Mo10O40] nanohybrid electrode shows better responsive behavior with a relaxation time of 0.16 ms. Furthermore, the PPy-H5[PV2Mo10O40] electrode exhibits outstanding cycle stability, retaining ~95% of its capacitance after 4500 cycles as compare to PPy-H4[PVMo11O40] (~91%) electrode. © 2020Item Investigations of redox-active polyoxomolybdate embedded polyaniline-based electrode material for energy application(Springer Science and Business Media Deutschland GmbH, 2022) Anandan Vannathan, A.A.; Kella, T.; Shee, D.; Mal, S.S.Higher capacitance supercapacitors have received considerable attention, including their massive power density, high stability, and long cycle life. On the other hand, polymers have been known for their energy storage device application because of the pseudocapacitance behavior resulting from the extended conjugation over the polymer backbone. Here, we report a simple chemical bath deposition method for the synthesis of two polyoxometalates (H4[PVMo11O40] and H5[PV2Mo10O40]) impregnated polyaniline (PAni) composite (PVMo11@PAni and PV2Mo10@PAni) for electrochemical supercapacitors. Various analytical methods characterized the electrode materials, e.g., Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) method, and the morphological features of those electrodes were acquired by field emission scanning microscopy (FESEM). The exceptionally high average capacitance of 1371 F g−1 was obtained for the composite PVMo11@PAni electrode at a 3 A g−1 current density and 1 V potential window with an energy density of 137.5 W h kg−1. The PVMo11@PAni composite electrode showed almost 4.3 times the higher energy density than pure PAni and 2.3 times higher than PV2Mo10@PAni. In contrast, PV2Mo10@PAni composite showed 1.9 times more energy density than pure PAni composite electrode. Interestingly, high average capacitance, charge–discharge rates, and high energy density with high-level power delivery make them promising electrode candidates for supercapacitors. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item One-Pot Synthesis of Polyoxometalate Decorated Polyindole for Energy Storage Supercapacitors(American Chemical Society, 2021) Anandan Vannathan, A.A.; Kella, T.; Shee, D.; Mal, S.S.The demand for energy storage supercapacitor devices has increased interest in completing all innovative technologies and renewable energy requirements. Here, we report a simple method of two polyoxomolybdate (H4[PVMo11O40] and H5[PV2Mo10O40]) doped polyindole (PIn) composites for electrochemical supercapacitors. The interactions between polyoxomolybdates and PIn were measured by Fourier transform infrared spectroscopy (FTIR), and powder XRD, and stability was measured by thermogravimetry. The field emission scanning microscopy (FESEM) was employed to investigate the morphology of the materials. The electrochemical measurements show that the PIn/PV2Mo10 electrode exhibits a higher capacitance of 198.09 F/g with an energy density of 10.19 Wh/kg and a power density of 198.54 W/kg at 0.2 A/g current density than the PIn/PVMo11 electrode. Both electrodes show a pseudocapacitance behavior due to the doping of redox-active polyoxomolybdates on the PIn surface and enhance the electrochemical properties. The electrodes' capacitive nature was measured by electrochemical impedance spectroscopy (EIS), which shows that the PIn/PVMo11 electrode has a resistive nature within the electrode-electrode interface. Moreover, the PIn/PV2Mo10 electrode offers remarkable cycle stability, retaining ?84% of its capacitance after 10,000 cycles (?83% for the PIn/PVMo11 electrode). The higher specific capacitance, faster charge/discharge rates, and higher cycle stability make them promising electrodes in supercapacitors. ©Item Organic cation linkers polyoxomolybdate-polypyrrole nanocomposite-based supercapacitors(Springer Science and Business Media Deutschland GmbH, 2021) Muhammed Anees, P.K.; Anandan Vannathan, A.; Kella, T.; Shee, D.; Mal, S.A few new hybrid electrode materials have been synthesized and immobilized for the next-generation energy storage device. The hybrid electrodes PVMo11-TBA, PVMo11-BTA, PVMo11-TBP, PVMo11-TBA-PPy, PVMo11-BTA-PPy, and PVMo11-TBP-PPy were well characterized by NMR, XRD, FTIR, FESEM, BET, and tested for electrochemical performance. Among these hybrid electrode materials, the PVMo11-TBA-PPy electrode shows a high specific capacitance of 144.37 F/g at a 1A/g current density and incredible power and energy density of 1100.16 W/kg and 15.28 Wh/kg, respectively. The high electrode’s capacitance was due to the synergistic effect between the PPy and TBA-PVMo11 and high ionic diffusion compared with other synthesized electrodes. It also exhibited high cycle stability of 72.78% after 4500 cycles at 1 M H2SO4 electrolyte. The EIS offers a lower ESR value of 0.72 ohms for the PVMo11-TBA-PPy than PVMo11-TBA, indicating the rapid charge/discharge rate. On the other hand, the PVMo11-BTA-PPy and PVMo11-TBP-PPy electrodes showed lower capacitance values of 26.98 and 19.53. F/g at 0.4 and 1 A/g current density, respectively. Lowering the capacitance could be the prevention of the interaction of organic cations with the counter polyanion. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Phosphomolybdic acid embedded into biomass-derived biochar carbon electrode for supercapacitor applications(Elsevier B.V., 2023) J.e, M.; Chandewar, P.R.; Shee, D.; Mal, S.S.In high-performance, clean, safe, and cost-effective ways, supercapacitors are among the most promising ways to store and release nonfossil energy. In recent years, renewable biomass-derived activated carbon has been explored as a potential option for electrode material. It restricts their specific capacitance despite being environment-friendly and possessing intrinsic mechanical strength. In order to overcome this limitation and preserve all other properties, we are infusing polyoxometalate into the activated carbon; this increases specific capacitance with its fast reversible redox behaviour and preserves the carbon's characteristics. Beside suffusing phosphomolybdic acid (PMA) into biomass waste material, such as orange peel-derived activated carbon (OPAC), a new hybrid material (OPAC-PMA) was developed. The nanohybrid design was revealed by structural and morphological research, which showed high interfacial contact, allowing polyanions to redox rapidly. The novel hybrid electrode material (OPAC-PMA) has a capacitance value of 66% higher than the bare OPAC electrode. A further study showed that OPAC-PMA composite showed 88.23% cycle stability in 0.5 M H2SO4 electrolyte at 6 A g−1 for 4000 cycles. © 2023 Elsevier B.V.Item Polyoxomolybdate-Polypyrrole-Graphene Oxide Nanohybrid Electrode for High-Power Symmetric Supercapacitors(American Chemical Society, 2021) Maity, S.; Je, M.; Biradar, B.R.; Chandewar, P.R.; Shee, D.; Das, P.P.; Mal, S.Supercapacitors have emerged as one of the most promising candidates for high-performance, safe, clean, and economical routes to store and release of nonfossil energy. Designing hybrid materials by integrating double-layer and pseudocapacitive materials is crucial to achieving high-power and high-energy storage devices simultaneously. Herein, we synthesized a polyoxomolybdate-polypyrrole-graphene oxide nanohybrid via a one-pot reaction. The inclusion of polypyrrole enables a uniform distribution of the polyoxomolybdate clusters; it also confines the restacking of graphene oxide nanosheets. The structural and morphological analysis to unveil the nanohybrid architecture implies excellent interfacial contact, enabling fast redox reaction of polyanions, and a quick transfer of charge to the interfaces. Electrochemical characteristics tested under a two-electrode system exhibit the highest capacitance of 354 F g-1 with significantly high specific energy and power of 49.16 Wh kg-1 and 999.86 W kg-1, respectively. In addition, the cell possesses a high-rate capability and long cycle life by maintaining 96% of its capacitance over 5000 sweeping cycles. The highest specific power of ?10 »000 W kg-1 was computed with Coulombic efficiency of 92.30% at 5 A g-1 current density. Electrochemical impedance spectroscopy additionally reveals enhanced redox charge transfer due to double hybridization. Furthermore, it also demonstrates the impedance and capacitive behavior of supercapacitor cells over a definite frequency regime. ©Item Polyoxovanadate-activated carbon-based hybrid materials for high-performance electrochemical capacitors(Institute of Physics, 2022) Anandan Vannathan, A.A.; Chandewar, P.R.; Shee, D.; Mal, S.S.Two different polyoxovanadates derivatives K5MnIVV11O33.10 H2O (MnV11) and K7MnIVV13O38.18 H2O (MnV13), have been studied to evluate their electrochemical performance. These polyoxovanadates were deposited on activated carbon (AC) to prepare AC-MnV11 and AC-MnV13 composites. The electrochemical performance of the AC- MnV11 electrode exhibits the remarkable specific capacitance of 479.73 F g-1 at a current density of 0.4 A g-1, along with incredible specific power and energy of 960 W kg-1. Likewise, the AC-MnV13 exhibits a specific capacitance of 357.33 F g-1 at the same current density of 0.4 A g-1 with a specific energy of 71.46 Wh kg-1. Interestingly, the AC- MnV11 could light up the red and yellow color LED bulbs for a duration of 80 and 60 seconds, respectively, indicating a considerable specific power of the material. The AC-MnV13 electrode shows significantly less lighting up the 65 and 30 seconds period with red and yellow LED bulbs. © The Electrochemical SocietyItem Polyoxovanadate-Activated Carbon-Based Hybrid Materials for High-Performance Electrochemical Capacitors(Institute of Physics, 2022) Anandan Vannathan, A.; Chandewar, P.R.; Shee, D.; Mal, S.S.Two different polyoxovanadates derivatives, K5MnIVV11O32.10 H2O (MnV11) and K7MnIVV13O38.18 H2O (MnV13), have been studied to evaluate their electrochemical performance. These polyoxovanadates were deposited on activated carbon (AC) to prepare AC-MnV11 and AC-MnV13 composites. The electrochemical performance of the AC-MnV11 electrode exhibits the remarkable specific capacitance of 479.73 F g-1 at a current density of 0.6 A g-1, along with incredible specific power and energy of 960 W kg-1. Likewise, the AC-MnV13 exhibits a specific capacitance of 357.33 F g-1 at the current density of 0.6 A g-1 with a specific energy of 71.46 Wh kg-1. Interestingly, the AC-MnV11 could light up the red and yellow color LED bulbs for a duration of 80 and 60 s, respectively, indicating a considerable specific power of the material. The AC-MnV13 electrode shows significantly less lighting up during the 65 and 30 s period with red and yellow LED bulbs. © 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.Item Selective dehydration of 1-butanol to butenes over silica supported heteropolyacid catalysts: Mechanistic aspect(Elsevier B.V., 2021) Kella, T.; Vennathan, A.A.; Dutta, S.; Mal, S.; Shee, D.Butenes are considered as important olefinic building block to produce fuels/fuel additives and commodity chemicals. In the present investigation, selective dehydration of 1-butanol to butenes was studied in a continuous-flow fixed-bed reactor using various silica-supported heteropolyacid (HPA) catalysts such as phosphotungstic acid (PTA), silicotungstic acid (STA), phosphomolybdic acid (PMA), and silicomolybdic acid (SMA) as the solid acid catalysts. The physicochemical properties of these HPA were determined by BET, powder XRD, FTIR, NH3-TPD, and Py-FTIR. The acid strength and Brønsted/Lewis (B/L) acid ratio were increased with higher loading of HPA on silica. The nature of HPA (addenda and hetero atom) and loading of HPA are important factors for the dehydration of 1-butanol and selectivity towards butenes. PTA and STA showed superior catalytic activity than PMA and SMA. The reaction temperature and WHSV also strongly affected the butanol conversion and selectivity of butenes. The selectivity of di-n?butyl ether decreases with the rising temperature from 523 K to 623 K. The isomerization of 1-butene leading to the formation of other butene isomers depends on the HPA loading, temperature, and WHSV. The presence of molybdenum addendum atom in PMA and SMA promotes dehydrogenation and hydrogenation, leading to the formation of various light hydrocarbons. The 20PTA/SiO2 catalyst afforded 99.8% selectivity towards butenes at quantitative conversion of 1-butanol, whereas the 20STA/SiO2 catalyst gave nearly 97.0% conversion of 1-butanol and 99.9% butenes selectivity at 673 K, 37.4 h?1 of WHSV. © 2021Item Synergistic Enhancement of Supercapacitor Performance: Vanadium-Substituted Phosphotungstic and Molybdic Acid Combined with Polypyrrole Using Pyridinium and Ammonium Ionic Containing Organic Cation Linkers with Improved Conductivity(John Wiley and Sons Inc, 2024) Puniyanikkottil, M.A.; Chandewar, P.R.; Shee, D.; Mal, S.S.High-performance energy-storage devices have emerged as a favored choice owing to their remarkable efficiency, sustainability, and environmental friendliness. Nowadays, polyoxometalate (POM)-based supercapacitor (SC) electrode materials have gained much attention. Herein, a few new POMs and ionic liquid (IL) composites incorporated into conducting polymer as electrode materials for SC applications are reported. The H6[PV3Mo9O40]⋅34H2O (PV3Mo9) and H6[PV3W9O40].34H2O (PV3W9) POMs are treated with tetrabutylammonium chloride and 1-butyl-4-methyl pyridinium chloride (BMP) and finally combined with polypyrrole (PPy) for the SC studies. An extensive array of analytical techniques is employed to delve into the interplay between the constituents within the composite materials, such as Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, nuclear magnetic resonance (1H and 13C), Field-emission scanning electron microscopy, energy-dispersive X-ray stpectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area. The combined application of these techniques enables us to understand the interaction dynamics within composite materials comprehensively. POM–ILs combination improves the solubility issues of POMs, and doping of PPy enhances the electrochemical performances of the materials. The PV3W9–BMP–PPy symmetric SC cell shows a specific capacitance of 294.79 F g−1 and an energy density of 28.89 Wh kg−1 at 1 A g−1 current density in 0.25 M H2SO4 medium followed by an excellent cycle life of 78.6% after 10,000 galvanostatic charge–discharge cycles. The fabricated SC device is performed to light up the bulbs of red, yellow, and green light emitting diodes for 50, 30, and 28 s, respectively. © 2024 Wiley-VCH GmbH.
