Browsing by Author "Sh, E.L."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Frequency response analysis of edge-cracked magneto-electro-elastic functionally graded plates using extended finite element method(Elsevier B.V., 2022) Sh, E.L.; Kattimani, S.; Thoi Trung, N.This paper studies the frequency response of edge-cracked magneto-electro elastic functionally graded (ECMEE-FG) plates using the extended finite element method (XFEM). First-order shear deformation theory (FSDT), von Karman's nonlinear strain-displacement equations, and a modified power-law are used to develop the numerical model. The coupled equations are derived and analyzed using Hamilton's principle and extended finite element methods. The influence of B-rich bottom and F-rich bottom material gradation, crack orientation, crack length, and aspect ratio on the geometrically nonlinear frequency response was investigated after the current study was validated. Furthermore, crack propagation behavior in the ECMEE-FG plate was examined. The results could be helpful for the design of functionally graded magneto electro elastic structures and devices. © 2022 Elsevier LtdItem Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates(Springer Science and Business Media Deutschland GmbH, 2022) Sh, E.L.; Kattimani, S.; Mahesh, M.The geometrically nonlinear free vibration and transient response of porous functionally graded magneto-electro-elastic (PFG-MEE) plates are studied based on the first-order shear deformation (FSDT) theory, von Karman's nonlinear strain–displacement relations along with modified power law. With Hamilton's theory, the coupled equations of motion are obtained and analyzed by adapting finite element methods (FEM). Moreover, using Newmark's, Picard's, and Newton–Raphson methods, a porous FG-MEE plate's nonlinear and transient response is analyzed using MATLAB software. After validating the present study, the influence of porosity distribution, porosity index, boundary conditions, aspect ratios, and thickness to length ratios on the nonlinear frequency ratio and nonlinear transient response of porous FG-MEE plate is investigated. It is revealed that geometric parameters, porosity index, boundary conditions, and form of porosity distribution significantly influence the nonlinear frequency ratio and nonlinear transient deflections of porous FG-MEE plates. © 2021, Wroclaw University of Science and Technology.
