Browsing by Author "Rubinstein, M."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers(2017) Ge, T.; Kalathi, J.T.; Halverson, J.D.; Grest, G.S.; Rubinstein, M.The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers. 2017 American Chemical Society.Item Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers(American Chemical Society service@acs.org, 2017) Ge, T.; Kalathi, J.T.; Halverson, J.D.; Grest, G.S.; Rubinstein, M.The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers. © 2017 American Chemical Society.Item Rouse mode analysis of chain relaxation in polymer nanocomposites(2015) Kalathi, J.T.; Kumar, S.K.; Rubinstein, M.; Grest, G.S.Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer-solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Thus, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect. 2015 The Royal Society of Chemistry.Item Rouse mode analysis of chain relaxation in polymer nanocomposites(Royal Society of Chemistry, 2015) Kalathi, J.T.; Kumar, S.K.; Rubinstein, M.; Grest, G.S.Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer-solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Thus, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect. © 2015 The Royal Society of Chemistry.
