Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ranjan, K.G."

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    An improved sliding window prediction-based outlier detection and correction for volatile time-series
    (John Wiley and Sons Ltd, 2021) Ranjan, K.G.; Tripathy, D.S.; Prusty, B.R.; Jena, D.
    Steady-state forecasting is indispensable for power system planning and operation. A forecasting model for inputs considering their historical record is a preliminary step for such type of studies. Since the historical data quality is decisive in edifice an accurate forecasting model, data preprocessing is essential. Primarily, the quality of raw data is affected by the presence of outliers, and preprocessing refers to outlier detection and correction. In this paper, an effort is made to improve the existing sliding window prediction-based preprocessing method. The recommended reforms are the calculation of appropriate window width and a new outlier correction approach. The proposed method denoted as improved sliding window prediction-based preprocessing is applied to the historical data of PV generation, load power, and the ambient temperature of different time-steps collected from various places in the United States and India. Firstly, the method's efficacy through detailed result analysis demonstrating the proposed preprocessing as a better way than its precursor and k-nearest neighbor approach is presented. Later, the improved out-of-sample forecasting accuracy canonizes the proposed method’s concert compared to both the above techniques and the case without preprocessing. © 2020 John Wiley & Sons Ltd
  • No Thumbnail Available
    Item
    Comparison of two data cleaning methods as applied to volatile time-series
    (Institute of Electrical and Electronics Engineers Inc., 2019) Ranjan, K.G.; Prusty, B.R.; Jena, D.
    Out-of-sample forecasting of historically observed time-series inevitably necessitates the application of a suitable data cleaning method to assist improved accuracy of the obtained results. The existing data cleaning methods though work amply with nonvolatile time series; fail when applied to a volatile time-series. In this paper, the suitability of the k-nearest neighbor approach and sliding window prediction approach is tested on a set of nonvolatile and volatile time-series. The performance comparison is carried out considering the historical record of furniture sales data, PV generation, load power, and ambient temperature data of different time-steps collected from various places in the USA. Further, the effect of parameters allied with both the methods on the preprocessing result is also analyzed. Finally, possible reforms are suggested for the appropriate preprocessing of volatile time-series. © 2019 IEEE.
  • No Thumbnail Available
    Item
    Review of preprocessing methods for univariate volatile time-series in power system applications
    (Elsevier Ltd, 2021) Ranjan, K.G.; Prusty, B.R.; Jena, D.
    Outlier detection and correction of time-series referred to as preprocessing, play a vital role in forecasting in power systems. Rigorous research on this topic has been made in the past few decades and is still ongoing. In this paper, a detailed survey of different preprocessing methods is made, and the existing preprocessing methods are categorized. Also, the preprocessing capability of each method is highlighted. The well-established methods of each category applicable to univariate data are critically analyzed and compared based on their preprocessing ability. The result analysis includes applying the well-established methods to volatile time-series frequently used in power system applications. PV generation, load power, and ambient temperature time-series (clean and raw) of different time-step collected from various places/weather zones are considered for index-based and graphical-based comparison among the well-established methods. The impact of change in the crucial parameter(s) values and time-resolution of the data on the methods’ performance is also elucidated in this paper. The pros and cons of methods are discussed along with the scope for improvisation. © 2020
  • No Thumbnail Available
    Item
    Review of preprocessing methods for univariate volatile time-series in power system applications
    (Elsevier Ltd, 2021) Ranjan, K.G.; Prusty, B.R.; Jena, D.
    Outlier detection and correction of time-series referred to as preprocessing, play a vital role in forecasting in power systems. Rigorous research on this topic has been made in the past few decades and is still ongoing. In this paper, a detailed survey of different preprocessing methods is made, and the existing preprocessing methods are categorized. Also, the preprocessing capability of each method is highlighted. The well-established methods of each category applicable to univariate data are critically analyzed and compared based on their preprocessing ability. The result analysis includes applying the well-established methods to volatile time-series frequently used in power system applications. PV generation, load power, and ambient temperature time-series (clean and raw) of different time-step collected from various places/weather zones are considered for index-based and graphical-based comparison among the well-established methods. The impact of change in the crucial parameter(s) values and time-resolution of the data on the methods’ performance is also elucidated in this paper. The pros and cons of methods are discussed along with the scope for improvisation. © 2020

Maintained by Central Library NITK | DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify