Browsing by Author "Pathumudy, R.D."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Thermal conformance parameters for assessment of heat transfer between similar and dissimilar metal contacts(John Wiley and Sons Inc, 2024) Pathumudy, R.D.; Samuel, A.; Prabhu, K.N.A novel approach to assess the thermal conformance between two metallic materials under transient conditions was proposed in the present investigation. Thermal conformance parameters (ƞ, ϴ, tg) were defined to quantify the contact condition between a metal–metal interface. To assess the effect of load and thermophysical properties of the sink and source materials on the degree of thermal conformance, a thermal conformance assessment parameter (TCAP) was proposed. Heat flux transients at the thermal interface was estimated by using an inverse heat conduction approach for various similar and dissimilar metallic surfaces in contact such as Cu─Cu, Al─Al, Al─Cu, and Cu─Al under both load and no load conditions. Commercially available silicone grease (SG) and thermal grease (CTG) were used as thermal interface materials (TIMs). The thermal conformance parameters increased with the increase in load for all the combinations of interfaces with and without TIMs. It was observed that, except for the copper–copper combination, thermal conformance parameters showed a linear relation with the TCAP. The enhancement in the heat transfer due to the application of load and TIM was validated by determining the maximum temperature difference (∆Tmax) across the interface. The experimental study revealed that the ∆Tmax decreases with the application of load and application of TIM leading to enhanced heat transfer. For the copper–copper combination, the thermal conformance depended solely on the load applied. Due to the lower thermal resistance offered by copper source/sink materials, the interfacial resistance between them becomes a dominant factor. The effect of TIM on heat absorbed by the sink was significant for the Cu/Cu interface. © 2024 Wiley Periodicals LLC.Item Thermal interface materials for cooling microelectronic systems: present status and future challenges(Springer, 2021) Pathumudy, R.D.; Prabhu, K.N.Thermal management has become a challenging aspect particularly in the field of microelectronics due to rapid miniaturization and massive scale integration. This has resulted in the generation of enormous amounts of heat that needs to be efficiently transferred from microelectronic devices to ensure longer life cycles. The efficient transfer of heat offers advantages such as achieving higher operating temperatures and prevents component failure. A device engineer has to, therefore, identify methods that would facilitate the efficient transfer of heat from the systems. The existence of an interface between the heat source and the heat sink impedes the efficient transfer of heat. Over the years, researchers have identified techniques that could be employed to reduce the interface impediments. Among these techniques, the application of thermal interface materials (TIMs) at the interface is the most promising and has become an integral part of applications where an efficient transfer of heat across interfaces is desirable. In the present paper, the assessment of contact resistance, properties of interface materials and thermal management of microelectronic devices using TIMs are discussed. The present status of TIMs is critically reviewed and the future challenges are highlighted. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Thermal interface materials for cooling microelectronic systems: present status and future challenges(Springer, 2021) Pathumudy, R.D.; Prabhu, K.N.Thermal management has become a challenging aspect particularly in the field of microelectronics due to rapid miniaturization and massive scale integration. This has resulted in the generation of enormous amounts of heat that needs to be efficiently transferred from microelectronic devices to ensure longer life cycles. The efficient transfer of heat offers advantages such as achieving higher operating temperatures and prevents component failure. A device engineer has to, therefore, identify methods that would facilitate the efficient transfer of heat from the systems. The existence of an interface between the heat source and the heat sink impedes the efficient transfer of heat. Over the years, researchers have identified techniques that could be employed to reduce the interface impediments. Among these techniques, the application of thermal interface materials (TIMs) at the interface is the most promising and has become an integral part of applications where an efficient transfer of heat across interfaces is desirable. In the present paper, the assessment of contact resistance, properties of interface materials and thermal management of microelectronic devices using TIMs are discussed. The present status of TIMs is critically reviewed and the future challenges are highlighted. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
