Browsing by Author "Patel R.M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Stress Distribution in Basal Geogrid Reinforced Pile-Supported Embankments Under Seismic Loads(2021) Patel R.M.; Jayalekshmi B.R.; Shivashankar R.Basal geosynthetic reinforced pile-supported embankments are proven as the more appropriate ground improvement technique for constructing embankments for roads over very soft clay deposits and approach roads or embankments to bridges. Numerous experimental and analytical works are available on the soil arching phenomenon of geosynthetic reinforced piled embankments subjected to static loading conditions. This study attempts to evaluate the stress distribution and soil arching in geosynthetic reinforced pile-supported embankments subjected to seismic excitations. Time-history analysis has been performed on the basal geogrid reinforced pile-supported embankments by varying the height of embankment and tensile modulus of geogrid. Analyses of results show that for α (the ratio of height of embankment to pile centre to centre spacing) less than or equal to 4.5, a geogrid tensile modulus of 3000 kN/m is sufficient to withstand vertical stresses due to earthquakes. And for the considered embankment height and pile diameter when α nearly equal to 4.5, differential settlements are very less irrespective of seismic excitations. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.Item A Study on the Seismic Behaviour of Embankments with Pile Supports and Basal Geogrid(2020) Patel R.M.; Jayalekshmi B.R.; Shivashankar R.For constructing the roads on soft grounds, basal geogrid-reinforced pile-supported embankments are a suitable solution over other conventional ground improvement techniques like preloading, embankment slope flattening, removing and replacing the soft soil, etc. Many studies are available on these basal geogrid-reinforced piled embankments to understand their behaviour under static loading conditions. But it is necessary to understand the behaviour of these geogrid-reinforced piled embankments under seismic excitations. Hence, finite element analysis of three-dimensional models of embankment having crest width of 20 m, height above ground of 6 m, with side slopes of 1V:1.5H consisting of pulverized fuel ash, overlying soft marine clay of 28 m thickness is carried out under seismic excitations corresponding to Zone III (IS:1893). Soft marine clay layer is improved by the addition of piles arranged in square grid pattern with 5.75% area replacement ratio. Geogrid with a tensile modulus of 4600 kN/m is used as the basal reinforcement. Initially, the embankment is analyzed without geogrid reinforcement and pile supports. Then, it is analyzed with (i) Basal geogrid (ii) With pile supports (iii) With basal geogrid and pile supports. The influence of various parameters of the embankment on maximum crest displacements, differential settlements at crest, toe horizontal displacements, stresses at pile head and foundation soil between piles and pile bending moment along the depth at peak acceleration are studied. Analysis of results shows that the embankment supported over piles with basal geogrid reinforcement will experience less crest settlements, differential settlements at crest and toe horizontal displacements due to earthquake load. © 2020, Springer Nature Singapore Pte Ltd.
