Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Parappagoudar, M.B."

Filter results by typing the first few letters
Now showing 1 - 16 of 16
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    An intelligent system for squeeze casting process—soft computing based approach
    (Springer London, 2016) Gowdru Chandrashekarappa, G.C.; Krishna, P.; Parappagoudar, M.B.
    The present work deals with the forward and reverse modelling of squeeze casting process by utilizing the neural network-based approaches. The important quality characteristics in squeeze casting, namely surface roughness and tensile strength, are significantly influenced by its process variables like pressure duration, squeeze pressure, and pouring and die temperatures. The process variables are considered as input and output to neural network in forward and reverse mapping, respectively. Forward and reverse mappings are carried out utilizing back propagation neural network and genetic algorithm neural network. For both supervised learning networks, batch training is employed using huge training data (input-output data). The input-output data required for training is generated artificially at random by varying process variables between their respective levels. Further, the developed model prediction performances are compared for 15 random test cases. Results have shown that both models are capable to make better predictions, and the models can be used by any novice user without knowing much about the mechanics of materials and the process. However, the genetic algorithm tuned neural network (GA-NN) model prediction performance is found marginally better in forward mapping, whereas BPNN produced better results in reverse mapping. © 2016, Springer-Verlag London.
  • No Thumbnail Available
    Item
    Artificial bee colony, genetic, back propagation and recurrent neural networks for developing intelligent system of turning process
    (Springer Nature, 2020) Shettigar, A.K.; Gowdru Chandrashekarappa, G.C.M.; Ganesh, G.R.; Vundavilli, P.R.; Parappagoudar, M.B.
    Intelligent manufacturing requires significant technological interventions to interface manufacturing processes with computational tools in order to dynamically mold the systems. In this era of the 4th industrial revolution, Artificial neural network (ANNs) is a modern tool equipped with a better learning capability (based on the past experience or history data) and assists in intelligent manufacturing. This research paper reports on ANNs based intelligent modelling of a turning process. The central composite design is used as a data-driven modelling tool and huge input–output is generated to train the neural networks. ANNs are trained with the data collected from the physics-based models by using back-propagation algorithm (BP), genetic algorithm (GA), artificial bee colony (ABC), and BP algorithm trained with self-feedback loop. The ANNs are trained and developed as both forward and reverse mapping models. Forward modelling aims at predicting a set of machining quality characteristics (i.e. surface roughness, cylindricity error, circularity error, and material removal rate) for the known combinations of cutting parameters (i.e. cutting speed, feed rate, depth of cut, and nose radius). Reverse modelling aims at predicting the cutting parameters for the desired machining quality characteristics. The parametric study has been conducted for all the developed neural networks (BPNN, GA-NN, RNN, ABC-NN) to optimize neural network parameters. The performance of neural network models has been tested with the help of ten test cases. The network predicted results are found in-line with the experimental values for both forward and reverse models. The neural network models namely, RNN and ABC-NN have shown better performance in forward and reverse modelling. The forward modelling results could help any novice user for off-line monitoring, that could predict the output without conducting the actual experiments. Reverse modelling prediction would help to dynamically adjust the cutting parameters in CNC machine to obtain the desired machining quality characteristics. © 2020, Springer Nature Switzerland AG.
  • No Thumbnail Available
    Item
    Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process
    (2017) Patel, G.C, M.; Shettigar, A.K.; Krishna, P.; Parappagoudar, M.B.
    Today, in competitive manufacturing environment reducing casting defects with improved mechanical properties is of industrial relevance. This led the present work to deal with developing the input-output relationship in squeeze casting process utilizing the neural network based forward and reverse mapping. Forward mapping is aimed to predict the casting quality (such as density, hardness and secondary dendrite arm spacing) for the known combination of casting variables (that is, squeeze pressure, pressure duration, die and pouring temperature). Conversely, attempt is also made to determine the appropriate set of casting variables for the required casting quality (that is, reverse mapping). Forward and reverse mapping tasks are carried out utilizing back propagation, recurrent and genetic algorithm tuned neural networks. Parameter study has been conducted to adjust and optimize the neural network parameters utilizing the batch mode of training. Since, batch mode of training requires huge data, the training data is generated artificially using response equations. Furthermore, neural network prediction performances are compared among themselves (reverse mapping) and with those of statistical regression models (forward mapping) with the help of test cases. The results shown all developed neural network models in both forward and reverse mappings are capable of making effective predictions. The results obtained will help the foundry personnel to automate and pr cised control of squeeze casting process. 2017
  • No Thumbnail Available
    Item
    Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process
    (Elsevier Ltd, 2017) Gowdru Chandrashekarappa, M.; Shettigar, A.K.; Krishna, P.; Parappagoudar, M.B.
    Today, in competitive manufacturing environment reducing casting defects with improved mechanical properties is of industrial relevance. This led the present work to deal with developing the input-output relationship in squeeze casting process utilizing the neural network based forward and reverse mapping. Forward mapping is aimed to predict the casting quality (such as density, hardness and secondary dendrite arm spacing) for the known combination of casting variables (that is, squeeze pressure, pressure duration, die and pouring temperature). Conversely, attempt is also made to determine the appropriate set of casting variables for the required casting quality (that is, reverse mapping). Forward and reverse mapping tasks are carried out utilizing back propagation, recurrent and genetic algorithm tuned neural networks. Parameter study has been conducted to adjust and optimize the neural network parameters utilizing the batch mode of training. Since, batch mode of training requires huge data, the training data is generated artificially using response equations. Furthermore, neural network prediction performances are compared among themselves (reverse mapping) and with those of statistical regression models (forward mapping) with the help of test cases. The results shown all developed neural network models in both forward and reverse mappings are capable of making effective predictions. The results obtained will help the foundry personnel to automate and précised control of squeeze casting process. © 2017
  • No Thumbnail Available
    Item
    An intelligent system for squeeze casting process soft computing based approach
    (2016) Manjunath, Patel, G.C.; Krishna, P.; Parappagoudar, M.B.
    The present work deals with the forward and reverse modelling of squeeze casting process by utilizing the neural network-based approaches. The important quality characteristics in squeeze casting, namely surface roughness and tensile strength, are significantly influenced by its process variables like pressure duration, squeeze pressure, and pouring and die temperatures. The process variables are considered as input and output to neural network in forward and reverse mapping, respectively. Forward and reverse mappings are carried out utilizing back propagation neural network and genetic algorithm neural network. For both supervised learning networks, batch training is employed using huge training data (input-output data). The input-output data required for training is generated artificially at random by varying process variables between their respective levels. Further, the developed model prediction performances are compared for 15 random test cases. Results have shown that both models are capable to make better predictions, and the models can be used by any novice user without knowing much about the mechanics of materials and the process. However, the genetic algorithm tuned neural network (GA-NN) model prediction performance is found marginally better in forward mapping, whereas BPNN produced better results in reverse mapping. 2016, Springer-Verlag London.
  • No Thumbnail Available
    Item
    Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm
    (2016) Manjunath, Patel, G.C.; Krishna, P.; Parappagoudar, M.B.
    In the present work, an attempt has been made using statistical tools to develop a non-linear regression model and to identify the significant contribution of squeeze cast process parameters on surface roughness, hardness and tensile strength. Microstructure examination performed on the squeeze cast samples has revealed that a maximum of 100 MPa pressure is good enough to eliminate all possible casting defects. Accuracy of the developed models has been tested with the help of ten test cases. It is important to note that the developed models predict responses with a reasonably good accuracy and the developed mathematical input output relationship helps the foundry-man to make better predictions. The present work comprises four objectives, which are conflicting in nature. Hence, mathematical formulation is used to convert four objective functions into a single objective function. The popular evolutionary algorithm, that is genetic algorithm has been utilised to determine the optimal process parameters. 2015 Engineers Australia.
  • No Thumbnail Available
    Item
    Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm
    (Taylor and Francis Ltd. michael.wagreich@univie.ac.at, 2016) Gowdru Chandrashekarappa, G.C.; Krishna, P.; Parappagoudar, M.B.
    In the present work, an attempt has been made using statistical tools to develop a non-linear regression model and to identify the significant contribution of squeeze cast process parameters on surface roughness, hardness and tensile strength. Microstructure examination performed on the squeeze cast samples has revealed that a maximum of 100 MPa pressure is good enough to eliminate all possible casting defects. Accuracy of the developed models has been tested with the help of ten test cases. It is important to note that the developed models predict responses with a reasonably good accuracy and the developed mathematical input–output relationship helps the foundry-man to make better predictions. The present work comprises four objectives, which are conflicting in nature. Hence, mathematical formulation is used to convert four objective functions into a single objective function. The popular evolutionary algorithm, that is genetic algorithm has been utilised to determine the optimal process parameters. © 2015 Engineers Australia.
  • No Thumbnail Available
    Item
    Modelling of squeeze casting process using design of experiments and response surface methodology
    (2015) Patel, G, C, M.; Krishna, P.; Parappagoudar, M.B.
    The present work makes an attempt to model and analyse squeeze casting process by utilising design of experiments and response surface methodology. The input output data for developing regression models and test cases is obtained by conducting the experiments. Surface roughness, ultimate tensile strength and yield strength have been measured for different combinations of process variables, namely, squeeze pressure, pressure duration, pouring temperature and die temperature. Two non-linear regression models based on central composite design (CCD) and Box-Behnken design (BBD) of experiments have been developed to establish the input output relationships. The effects of process variables on the measured responses have been studied using surface plots. The performances of the two non-linear models have been tested for their prediction accuracy with the help of 15 test cases. It is observed that, both CCD and BBD, the non-linear regression models are statistically adequate and capable of making accurate predictions. 2015 W. S. Maney & Son Ltd.
  • No Thumbnail Available
    Item
    Modelling of squeeze casting process using design of experiments and response surface methodology
    (Maney Publishing maney@maney.co.uk, 2015) Gowdru Chandrashekarappa, M.; Krishna, P.; Parappagoudar, M.B.
    The present work makes an attempt to model and analyse squeeze casting process by utilising design of experiments and response surface methodology. The input–output data for developing regression models and test cases is obtained by conducting the experiments. Surface roughness, ultimate tensile strength and yield strength have been measured for different combinations of process variables, namely, squeeze pressure, pressure duration, pouring temperature and die temperature. Two non-linear regression models based on central composite design (CCD) and Box-Behnken design (BBD) of experiments have been developed to establish the input–output relationships. The effects of process variables on the measured responses have been studied using surface plots. The performances of the two non-linear models have been tested for their prediction accuracy with the help of 15 test cases. It is observed that, both CCD and BBD, the non-linear regression models are statistically adequate and capable of making accurate predictions. © 2015 W. S. Maney & Son Ltd.
  • No Thumbnail Available
    Item
    Multi-Objective Optimization of Squeeze Casting Process using Genetic Algorithm and Particle Swarm Optimization
    (2016) Patel, G.C.M.; Krishna, P.; Vundavilli, P.R.; Parappagoudar, M.B.
    The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time. 2016 G.C.M. Patel et al., published by De Gruyter Open.
  • No Thumbnail Available
    Item
    Multi-Objective Optimization of Squeeze Casting Process using Genetic Algorithm and Particle Swarm Optimization
    (De Gruyter Open Ltd peter.golla@degruyter.com, 2016) Gowdru Chandrashekarappa, G.C.; Krishna, P.; Vundavilli, P.R.; Parappagoudar, M.B.
    The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time. © 2016 G.C.M. Patel et al., published by De Gruyter Open.
  • No Thumbnail Available
    Item
    Prediction of secondary dendrite arm spacing in squeeze casting using fuzzy logic based approaches
    (2015) Patel, M.G.C.; Krishna, P.; Parappagoudar, M.B.
    The quality of the squeeze castings is significantly affected by secondary dendrite arm spacing, which is influenced by squeeze cast input parameters. The relationships of secondary dendrite arm spacing with the input parameters, namely time delay, pressure duration, squeeze pressure, pouring and die temperatures are complex in nature. The present research work focuses on the development of input-output relationships using fuzzy logic approach. In fuzzy logic approach, squeeze cast process variables are expressed as a function of input parameters and secondary dendrite arm spacing is expressed as an output parameter. It is important to note that two fuzzy logic based approaches have been developed for the said problem. The first approach deals with the manually constructed mamdani based fuzzy system and the second approach deals with automatic evolution of the Takagi and Sugeno's fuzzy system. It is important to note that the performance of the developed models is tested for both linear and non-linear type membership functions. In addition the developed models were compared with the ten test cases which are different from those of training data. The developed fuzzy systems eliminates the need of a number of trials in selection of most influential squeeze cast process parameters. This will reduce time and cost of trial experimentations. The results showed that, all the developed models can be effectively used for making prediction. Further, the present research work will help foundrymen to select parameters in squeeze casting to obtain the desired quality casting without much of time and resource consuming. by M.B. Parappagoudarb 2015.
  • No Thumbnail Available
    Item
    Prediction of secondary dendrite arm spacing in squeeze casting using fuzzy logic based approaches
    (De Gruyter Open Ltd, 2015) Gowdru Chandrashekarappa, M.G.C.; Krishna, K.; Parappagoudar, M.B.
    The quality of the squeeze castings is significantly affected by secondary dendrite arm spacing, which is influenced by squeeze cast input parameters. The relationships of secondary dendrite arm spacing with the input parameters, namely time delay, pressure duration, squeeze pressure, pouring and die temperatures are complex in nature. The present research work focuses on the development of input-output relationships using fuzzy logic approach. In fuzzy logic approach, squeeze cast process variables are expressed as a function of input parameters and secondary dendrite arm spacing is expressed as an output parameter. It is important to note that two fuzzy logic based approaches have been developed for the said problem. The first approach deals with the manually constructed mamdani based fuzzy system and the second approach deals with automatic evolution of the Takagi and Sugeno's fuzzy system. It is important to note that the performance of the developed models is tested for both linear and non-linear type membership functions. In addition the developed models were compared with the ten test cases which are different from those of training data. The developed fuzzy systems eliminates the need of a number of trials in selection of most influential squeeze cast process parameters. This will reduce time and cost of trial experimentations. The results showed that, all the developed models can be effectively used for making prediction. Further, the present research work will help foundrymen to select parameters in squeeze casting to obtain the desired quality casting without much of time and resource consuming. © by M.B. Parappagoudarb 2015.
  • No Thumbnail Available
    Item
    Squeeze casting parameter optimization using swarm intelligence and evolutionary algorithms
    (IGI Global, 2018) Gowdru Chandrashekarappa, G.C.; Krishna, K.; Parappagoudar, M.B.; Vundavilli, P.R.; Bharath Bhushan, S.N.
    This chapter is focused to locate the optimum squeeze casting conditions using evolutionary swarm intelligence and teaching learning-based algorithms. The evolutionary and swarm intelligent algorithms are used to determine the best set of process variables for the conflicting requirements in multiple objective functions. Four cases are considered with different sets of weight fractions to the objective function based on user requirements. Fitness values are determined for all different cases to evaluate the performance of evolutionary and swarm intelligent methods. Teaching learning-based optimization and multiple-objective particle swarm optimization based on crowing distance have yielded similar results. Experiments have been conducted to test the results obtained. The performance of swarm intelligence is found to be comparable with that of evolutionary genetic algorithm in locating the optimal set of process variables. However, TLBO outperformed GA, PSO, and MOPSO-CD with regard to computation time. © 2018, IGI Global.
  • No Thumbnail Available
    Item
    Squeeze casting process modeling by a conventional statistical regression analysis approach
    (2016) Patel, G.C., M.; Krishna, P.; Parappagoudar, M.B.
    During the casting process, the alloy composition, melt treatment modification, processing method, and process variables change the microstructure, thereby affecting the mechanical properties. The hybrid squeeze casting method has been used to limit casting defects, refine the micro-structure, and enhance the mechanical properties. The process variables influence the mechanical and micro-structure properties during squeeze casting. In the present study, we established nonlinear input output relationships and explored the physical behavior of this process based on the statistical design of experiments and using the response surface methodology. Experiments were conducted to measure the responses in terms of the density, hardness, and secondary dendrite arm spacing. Two nonlinear regression models, i.e., Box Behnken design and central composite design, were used to conduct experiments, collect experimental data, identify significant process variables, analyze the collected data, and establish the complex input output relationships. Surface plots were used to explore the effects of the squeeze pressure, pressure duration, pouring, and die temperature on the measured responses. Analysis of variance tests were conducted to evaluate the statistical suitability of the models developed. Furthermore, the accuracies of the predictions made by the models were investigated based on test cases. We found that both of the nonlinear models were statistically adequate and they provided complete insights into the complex nonlinear input output relationships. Central composite design performed better for the secondary dendrite arm spacing and hardness responses, whereas its performance was the same as that of Box Behnken design for the density response. The relationships between the responses (i.e., outputs) were established by generating large volumes of input output data using the nonlinear regression models. We found that the density, hardness, and secondary dendrite arm spacing responses could be obtained by utilizing the nonlinear regression equations and the same set of process variables. Furthermore, the secondary dendrite arm spacing response could be expressed as third order nonlinear functions of density or hardness (structure to property relationship). The results showed that the secondary dendrite arm spacing had inverse relationships with density and hardness, whereas density and hardness had direct relationships. 2016 Elsevier Ltd
  • No Thumbnail Available
    Item
    Squeeze casting process modeling by a conventional statistical regression analysis approach
    (Elsevier Inc. usjcs@elsevier.com, 2016) Gowdru Chandrashekarappa, G.C.; Krishna, P.; Parappagoudar, M.B.
    During the casting process, the alloy composition, melt treatment modification, processing method, and process variables change the microstructure, thereby affecting the mechanical properties. The hybrid squeeze casting method has been used to limit casting defects, refine the micro-structure, and enhance the mechanical properties. The process variables influence the mechanical and micro-structure properties during squeeze casting. In the present study, we established nonlinear input–output relationships and explored the physical behavior of this process based on the statistical design of experiments and using the response surface methodology. Experiments were conducted to measure the responses in terms of the density, hardness, and secondary dendrite arm spacing. Two nonlinear regression models, i.e., Box–Behnken design and central composite design, were used to conduct experiments, collect experimental data, identify significant process variables, analyze the collected data, and establish the complex input–output relationships. Surface plots were used to explore the effects of the squeeze pressure, pressure duration, pouring, and die temperature on the measured responses. Analysis of variance tests were conducted to evaluate the statistical suitability of the models developed. Furthermore, the accuracies of the predictions made by the models were investigated based on test cases. We found that both of the nonlinear models were statistically adequate and they provided complete insights into the complex nonlinear input–output relationships. Central composite design performed better for the secondary dendrite arm spacing and hardness responses, whereas its performance was the same as that of Box–Behnken design for the density response. The relationships between the responses (i.e., outputs) were established by generating large volumes of input–output data using the nonlinear regression models. We found that the density, hardness, and secondary dendrite arm spacing responses could be obtained by utilizing the nonlinear regression equations and the same set of process variables. Furthermore, the secondary dendrite arm spacing response could be expressed as third order nonlinear functions of density or hardness (structure to property relationship). The results showed that the secondary dendrite arm spacing had inverse relationships with density and hardness, whereas density and hardness had direct relationships. © 2016 Elsevier Ltd

Maintained by Central Library NITK | DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify