Browsing by Author "Indukuri, J.V."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Numerical simulation of oscillating lid driven square cavity(2018) Indukuri, J.V.; Maniyeri, R.This paper aim to develop a two-dimensional computational model to study the fluid dynamic behaviour in a square cavity driven by an oscillating lid using staggered grid based finite volume method. Firstly the developed computational model is validated with that of other researcher's results for the case of finite wall motion. Later the numerical simulations are performed for the case of top wall oscillations for various combinations of Reynolds number and frequencies. From these simulations an optimum frequency is chosen and then with the optimum frequency the simulations are carried out to explore the vortex behaviour for the cases of parallel wall oscillations (both top and bottom walls moving in the same direction) and anti-parallel wall oscillations (both top and bottom walls moving in the opposite direction). From these simulations it may be concluded that Re = 1000 is medium range of operation for better mixing inside the cavity for the cases of parallel and anti-parallel wall oscillations. 2017 Faculty of Engineering, Alexandria UniversityItem Numerical simulation of oscillating lid driven square cavity(Elsevier B.V., 2018) Indukuri, J.V.; Maniyeri, R.This paper aim to develop a two-dimensional computational model to study the fluid dynamic behaviour in a square cavity driven by an oscillating lid using staggered grid based finite volume method. Firstly the developed computational model is validated with that of other researcher's results for the case of finite wall motion. Later the numerical simulations are performed for the case of top wall oscillations for various combinations of Reynolds number and frequencies. From these simulations an optimum frequency is chosen and then with the optimum frequency the simulations are carried out to explore the vortex behaviour for the cases of parallel wall oscillations (both top and bottom walls moving in the same direction) and anti-parallel wall oscillations (both top and bottom walls moving in the opposite direction). From these simulations it may be concluded that Re = 1000 is medium range of operation for better mixing inside the cavity for the cases of parallel and anti-parallel wall oscillations. © 2017 Faculty of Engineering, Alexandria UniversityItem Numerical study of forced convection heat transfer in an oscillating lid driven cavity with heated top wall(2018) Indukuri, J.V.; Maniyeri, R.The present work is aimed to study the fluid flow and heat transfer behaviour in an oscillating lid-driven cavity using finite volume method by developing a two-dimensional computational model. Firstly, the developed computational model is validated by comparing our numerical results with that of the other researcher's results for the case of wall moving with finite motion. Next, the simulations are conducted for oscillating cavity problem with top wall oscillation for Reynolds number (Re =5 00) and frequency (?=2?/6). Later, the simulations are carried out for cases of oscillating parallel wall (upper and lower walls oscillating with sync) and oscillating anti-parallel wall (upper and lower walls oscillating with reverse sync) with the same optimum frequency and fixed Reynolds number (Re = 500). Secondly, the same optimum frequency is used to study the heat transfer characteristics in an oscillating lid-driven square cavity with heated top wall and lower cold wall for various Reynolds numbers (Re = 100-1000) and Prandtl numbers (Pr = 0.2 to 1.0). From this study, it is found that for high Prandtl number case (Pr = 1.0) the flow of high temperature isotherms inside the cavity is more when compared with low Prandtl number cases due to increase in molecular diffusion of momentum. 2018 International Information and Engineering Technology Association.Item Numerical study of forced convection heat transfer in an oscillating lid driven cavity with heated top wall(International Information and Engineering Technology Association info@iieta.org, 2018) Indukuri, J.V.; Maniyeri, R.The present work is aimed to study the fluid flow and heat transfer behaviour in an oscillating lid-driven cavity using finite volume method by developing a two-dimensional computational model. Firstly, the developed computational model is validated by comparing our numerical results with that of the other researcher's results for the case of wall moving with finite motion. Next, the simulations are conducted for oscillating cavity problem with top wall oscillation for Reynolds number (Re =5 00) and frequency (?=2?/6). Later, the simulations are carried out for cases of oscillating parallel wall (upper and lower walls oscillating with sync) and oscillating anti-parallel wall (upper and lower walls oscillating with reverse sync) with the same optimum frequency and fixed Reynolds number (Re = 500). Secondly, the same optimum frequency is used to study the heat transfer characteristics in an oscillating lid-driven square cavity with heated top wall and lower cold wall for various Reynolds numbers (Re = 100-1000) and Prandtl numbers (Pr = 0.2 to 1.0). From this study, it is found that for high Prandtl number case (Pr = 1.0) the flow of high temperature isotherms inside the cavity is more when compared with low Prandtl number cases due to increase in molecular diffusion of momentum. © 2018 International Information and Engineering Technology Association.
